論文の概要: FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs
- arxiv url: http://arxiv.org/abs/2504.21206v1
- Date: Tue, 29 Apr 2025 22:23:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 23:08:58.067926
- Title: FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs
- Title(参考訳): FedHERO: 親血性グラフ上のノード分類タスクのためのフェデレートラーニングアプローチ
- Authors: Zihan Chen, Xingbo Fu, Yushun Dong, Jundong Li, Cong Shen,
- Abstract要約: Federated Graph Learning(FGL)は、クライアントがグラフニューラルネットワーク(GNN)を分散的にトレーニングすることを可能にする。
FGL法は通常、全てのクライアントが所有するグラフデータが、類似したノードの分布パターンを保証するためにホモフィリックであることが要求される。
異種グラフからの洞察を効果的に活用し、共有するために設計されたFGLフレームワークであるFedHEROを提案する。
- 参考スコア(独自算出の注目度): 55.51300642911766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Graph Learning (FGL) empowers clients to collaboratively train Graph neural networks (GNNs) in a distributed manner while preserving data privacy. However, FGL methods usually require that the graph data owned by all clients is homophilic to ensure similar neighbor distribution patterns of nodes. Such an assumption ensures that the learned knowledge is consistent across the local models from all clients. Therefore, these local models can be properly aggregated as a global model without undermining the overall performance. Nevertheless, when the neighbor distribution patterns of nodes vary across different clients (e.g., when clients hold graphs with different levels of heterophily), their local models may gain different and even conflict knowledge from their node-level predictive tasks. Consequently, aggregating these local models usually leads to catastrophic performance deterioration on the global model. To address this challenge, we propose FedHERO, an FGL framework designed to harness and share insights from heterophilic graphs effectively. At the heart of FedHERO is a dual-channel GNN equipped with a structure learner, engineered to discern the structural knowledge encoded in the local graphs. With this specialized component, FedHERO enables the local model for each client to identify and learn patterns that are universally applicable across graphs with different patterns of node neighbor distributions. FedHERO not only enhances the performance of individual client models by leveraging both local and shared structural insights but also sets a new precedent in this field to effectively handle graph data with various node neighbor distribution patterns. We conduct extensive experiments to validate the superior performance of FedHERO against existing alternatives.
- Abstract(参考訳): Federated Graph Learning(FGL)は、データプライバシを保持しながら、分散方法でグラフニューラルネットワーク(GNN)を協調的にトレーニングする機能を提供する。
しかしながら、FGL法は通常、全てのクライアントが所有するグラフデータが、類似したノードの分布パターンを保証するためにホモフィル的であることを要求する。
このような仮定は、学習した知識がすべてのクライアントのローカルモデル間で一貫していることを保証する。
したがって、これらの局所モデルは、全体的な性能を損なうことなく、グローバルモデルとして適切に集約することができる。
それでも、ノードの隣り合う分布パターンが異なるクライアント間で異なる場合(例えば、クライアントが異なるレベルのヘテロフィリーのグラフを持っている場合)、それらのローカルモデルは、ノードレベルの予測タスクから異なる、さらには矛盾する知識を得る可能性がある。
したがって、これらの局所的なモデルを集約すると、大域的なモデルでは破滅的な性能劣化が起こる。
この課題に対処するために、異種グラフからの洞察を効果的に活用し、共有するために設計されたFGLフレームワークであるFedHEROを提案する。
FedHEROの中心には、局所グラフに符号化された構造知識を識別するために設計された構造学習器を備えた二重チャネルGNNがある。
この特別なコンポーネントにより、FedHEROは各クライアントのローカルモデルで、ノード近傍分布の異なるパターンを持つグラフで普遍的に適用可能なパターンを特定し、学習することができる。
FedHEROは、局所的および共有的な構造的洞察を活用することにより、個々のクライアントモデルの性能を向上させるだけでなく、様々なノード近傍の分布パターンでグラフデータを効果的に処理する新たな先例も設定する。
我々はFedHEROの既存の代替品に対する優れた性能を検証するための広範な実験を行っている。
関連論文リスト
- Enhancing Federated Graph Learning via Adaptive Fusion of Structural and Node Characteristics [26.619187557486708]
Federated Graph Learning (FGL)は、分散クライアント間でグローバルグラフニューラルネットワーク(GNN)モデルをトレーニングするメリットを実証した。
本稿では,FedGCFという新しいFGLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-25T09:20:06Z) - One Model for One Graph: A New Perspective for Pretraining with Cross-domain Graphs [61.9759512646523]
複雑なネットワークパターンをキャプチャする強力なツールとして、グラフニューラルネットワーク(GNN)が登場した。
既存のGNNには、慎重にドメイン固有のアーキテクチャ設計と、データセットのスクラッチからのトレーニングが必要です。
我々は、新しいクロスドメイン事前学習フレームワーク「1つのグラフのための1つのモデル」を提案する。
論文 参考訳(メタデータ) (2024-11-30T01:49:45Z) - FedRGL: Robust Federated Graph Learning for Label Noise [5.296582539751589]
Federated Graph Learning(FGL)は、グラフニューラルネットワークに基づく分散機械学習パラダイムである。
本稿では,FedRGLと呼ばれるラベルノイズを用いた頑健なグラフ学習手法を提案する。
FedRGLは、様々なノイズ率、タイプ、クライアント数で12のベースライン手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-11-28T04:37:04Z) - Federated Graph Learning with Graphless Clients [52.5629887481768]
FGL(Federated Graph Learning)は、グラフニューラルネットワーク(GNN)などの機械学習モデルをトレーニングするタスクである。
グラフレスクライアントを用いたFGLにおける問題に対処するための新しいフレームワークFedGLSを提案する。
論文 参考訳(メタデータ) (2024-11-13T06:54:05Z) - Federated Graph Learning with Structure Proxy Alignment [43.13100155569234]
Federated Graph Learning (FGL)は、複数のデータ所有者に分散されたグラフデータよりもグラフ学習モデルを学習することを目的としている。
我々はFedSprayを提案する。FedSprayは、潜伏空間における局所的なクラスワイド構造プロキシを学習する新しいFGLフレームワークである。
我々のゴールは、ノード分類のための信頼性が高く、偏りのない隣り合う情報として機能する、整列構造プロキシを得ることです。
論文 参考訳(メタデータ) (2024-08-18T07:32:54Z) - Federated Graph Semantic and Structural Learning [54.97668931176513]
本稿では,ノードレベルのセマンティクスとグラフレベルの構造の両方によって局所的なクライアントの歪みがもたらされることを示す。
構造的グラフニューラルネットワークは、固有の隣接関係のため、隣人に類似性を持っていると仮定する。
我々は、隣接関係を類似度分布に変換し、グローバルモデルを利用して関係知識を局所モデルに蒸留する。
論文 参考訳(メタデータ) (2024-06-27T07:08:28Z) - FedSheafHN: Personalized Federated Learning on Graph-structured Data [22.825083541211168]
我々はFedSheafHNと呼ばれるモデルを提案し、各クライアントのローカルサブグラフをサーバ構築コラボレーショングラフに埋め込む。
我々のモデルは複雑なクライアント特性の統合と解釈を改善します。
また、高速なモデル収束と効果的な新しいクライアントの一般化も備えている。
論文 参考訳(メタデータ) (2024-05-25T04:51:41Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - AdaFGL: A New Paradigm for Federated Node Classification with Topology
Heterogeneity [44.11777886421429]
Federated Graph Learning (FGL) はグラフニューラルネットワークに基づく分散フレームワークとして注目されている。
構造的非イド分割の概念を導入し、次に、UnderlineAdaptive UnderlineFederated UnderlineGraph UnderlineLearning (AdaFGL)と呼ばれる新しいパラダイムを示す。
提案したAdaFGLは,コミュニティ分割の3.24%,コミュニティ分割の5.57%,非イド分割の5.57%でベースラインを上回った。
論文 参考訳(メタデータ) (2024-01-22T08:23:31Z) - GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts [75.51612253852002]
GraphMETROは、自然多様性をモデル化し、複雑な分散シフトをキャプチャするグラフニューラルネットワークアーキテクチャである。
GraphMETROはGOODベンチマークから4つのデータセットに対して最先端の結果を得る。
論文 参考訳(メタデータ) (2023-12-07T20:56:07Z) - Personalized Subgraph Federated Learning [56.52903162729729]
本稿では,新たなサブグラフFL問題,パーソナライズされたサブグラフFLを導入する。
本稿では,Federated Personalized sUBgraph Learning (FED-PUB)を提案する。
オーバーラップしないサブグラフとオーバーラップするサブグラフの両方を考慮して,FED-PUBのサブグラフFL性能を6つのデータセットで検証した。
論文 参考訳(メタデータ) (2022-06-21T09:02:53Z) - Node-wise Localization of Graph Neural Networks [52.04194209002702]
グラフニューラルネットワーク(GNN)は、グラフ上の表現学習モデルの強力なファミリーとして出現する。
グラフのグローバルな側面とローカルな側面の両方を考慮し,GNNのノードワイドなローカライゼーションを提案する。
我々は,4つのベンチマークグラフに対して広範な実験を行い,最先端のGNNを超える有望な性能を継続的に獲得する。
論文 参考訳(メタデータ) (2021-10-27T10:02:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。