論文の概要: Generative QoE Modeling: A Lightweight Approach for Telecom Networks
- arxiv url: http://arxiv.org/abs/2504.21353v1
- Date: Wed, 30 Apr 2025 06:19:37 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-05-02 16:06:52.148484
- Title: Generative QoE Modeling: A Lightweight Approach for Telecom Networks
- Title(参考訳): ジェネレーティブQoEモデリング:テレコムネットワークにおける軽量アプローチ
- Authors: Vinti Nayar, Kanica Sachdev, Brejesh Lall,
- Abstract要約: 本研究では,計算効率,解釈可能性,予測精度のバランスをとる軽量な生成モデリングフレームワークを提案する。
ベクトル量子化(VQ)を前処理技術として用いることにより、連続的なネットワーク機能は事実上離散的な分類記号に変換される。
このVQ-HMMパイプラインは、新しい未知のデータに対する確率的推論をサポートしながら、動的QoEパターンをキャプチャするモデルの能力を高める。
- 参考スコア(独自算出の注目度): 6.473372512447993
- License:
- Abstract: Quality of Experience (QoE) prediction plays a crucial role in optimizing resource management and enhancing user satisfaction across both telecommunication and OTT services. While recent advances predominantly rely on deep learning models, this study introduces a lightweight generative modeling framework that balances computational efficiency, interpretability, and predictive accuracy. By validating the use of Vector Quantization (VQ) as a preprocessing technique, continuous network features are effectively transformed into discrete categorical symbols, enabling integration with a Hidden Markov Model (HMM) for temporal sequence modeling. This VQ-HMM pipeline enhances the model's capacity to capture dynamic QoE patterns while supporting probabilistic inference on new and unseen data. Experimental results on publicly available time-series datasets incorporating both objective indicators and subjective QoE scores demonstrate the viability of this approach in real-time and resource-constrained environments, where inference latency is also critical. The framework offers a scalable alternative to complex deep learning methods, particularly in scenarios with limited computational resources or where latency constraints are critical.
- Abstract(参考訳): 品質・オブ・エクスペリエンス(QoE)予測は、資源管理の最適化と、通信サービスとOTTサービスの両方におけるユーザの満足度向上に重要な役割を果たしている。
近年の進歩はディープラーニングモデルに大きく依存しているが,本研究では,計算効率,解釈可能性,予測精度のバランスをとる軽量な生成モデリングフレームワークを導入する。
ベクトル量子化(VQ)を前処理技術として用いることにより、連続的なネットワーク機能は事実上離散的な分類記号に変換され、時間的シーケンスモデリングのための隠れマルコフモデル(HMM)との統合が可能となる。
このVQ-HMMパイプラインは、新しい未知のデータに対する確率的推論をサポートしながら、動的QoEパターンをキャプチャするモデルの能力を高める。
客観的指標と主観的QoEスコアの両方を取り入れた公開時系列データセットの実験結果は、推論遅延が重要となるリアルタイムおよびリソース制約環境におけるこのアプローチの可能性を実証している。
このフレームワークは複雑なディープラーニング手法に代わるスケーラブルな代替手段を提供する。
関連論文リスト
- Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting [0.8568432695376288]
本稿では、複雑な時間的データを予測するための高度なフェデレートラーニング(FL)フレームワークを提案し、最近の最先端モデルを改善した。
結果として生じるアーキテクチャは、様々な予測アプリケーションで複雑な時間パターンを扱う能力を大幅に改善します。
提案手法の有効性は,都市部におけるマルチモーダル交通需要予測のためのパブリックデータセットや,Origin-Destination (OD) 行列予測のためのプライベートデータセットなど,実世界の応用に関する広範な実験を通じて実証される。
論文 参考訳(メタデータ) (2025-03-06T15:16:57Z) - Multi-Head Self-Attending Neural Tucker Factorization [5.734615417239977]
本稿では,高次元および不完全(HDI)テンソルの学習表現に適したニューラルネットワークに基づくテンソル分解手法を提案する。
提案したMSNTucFモデルでは,観測結果の欠落を推定する上で,最先端のベンチマークモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-16T13:04:15Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Asymptotic Analysis of Sample-averaged Q-learning [2.2374171443798034]
本稿では、サンプル平均Qラーニング(SA-QL)と呼ばれる、時間変化のバッチ平均Qラーニングのためのフレームワークを提案する。
サンプル平均化アルゴリズムの機能的中心極限を軽度条件下で利用し,間隔推定のためのランダムなスケーリング手法を開発した。
この研究は、サンプル平均Q-ラーニングのための統一理論基盤を確立し、効率的なバッチスケジューリングとRLアルゴリズムの統計的推論に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-10-14T17:17:19Z) - Recurrent Interpolants for Probabilistic Time Series Prediction [10.422645245061899]
リカレントニューラルネットワークやトランスフォーマーのような逐次モデルは、確率的時系列予測の標準となっている。
近年の研究では、拡散モデルやフローベースモデルを用いて、時系列計算や予測に拡張した生成的アプローチについて検討している。
本研究は、補間剤と制御機能付き条件生成に基づく、リカレントニューラルネットワークの効率と拡散モデルの確率的モデリングを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-18T03:52:48Z) - GACL: Graph Attention Collaborative Learning for Temporal QoS Prediction [5.040979636805073]
時間的予測のための新しいグラフ協調学習(GACL)フレームワークを提案する。
動的ユーザサービスグラフ上に構築され、過去のインタラクションを包括的にモデル化する。
WS-DREAMデータセットの実験は、GACLが時間的予測のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-20T05:38:47Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - SVQ: Sparse Vector Quantization for Spatiotemporal Forecasting [23.38628640665113]
本稿では,スパース回帰に基づくベクトル量子化(SVQ)を提案する。
ビデオ予測では、Human、KTH、KittiCaltech-itはMAEを平均9.4%削減し、画質を17.3%改善している。
5つのベンチマークデータセットに関する実証研究により、SVQが最先端の結果を示した。
論文 参考訳(メタデータ) (2023-12-06T10:42:40Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
SAM(Self-attention mechanism)は、人工知能の様々な分野で広く使われている。
常微分方程式(ODE)の高精度解における固有剛性現象(SP)は,高性能ニューラルネットワーク(NN)にも広く存在することを示す。
SAMは、本質的なSPを測定するためのモデルの表現能力を高めることができる剛性対応のステップサイズ適応器でもあることを示す。
論文 参考訳(メタデータ) (2023-08-19T08:17:41Z) - Inter-case Predictive Process Monitoring: A candidate for Quantum
Machine Learning? [0.0]
この研究は、最近のケース間予測プロセスモニタリングの進歩に基づいている。
予測精度に対するケース間機能の影響を総合的にベンチマークする。
量子機械学習モデルが含まれており、古典的なモデルに勝るものと期待されている。
BPIチャレンジによる実世界のトレーニングデータの評価は、ケース間の特徴が精度の4%以上向上していることを示している。
論文 参考訳(メタデータ) (2023-06-30T18:33:45Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。