UAV-VLN: End-to-End Vision Language guided Navigation for UAVs
- URL: http://arxiv.org/abs/2504.21432v1
- Date: Wed, 30 Apr 2025 08:40:47 GMT
- Title: UAV-VLN: End-to-End Vision Language guided Navigation for UAVs
- Authors: Pranav Saxena, Nishant Raghuvanshi, Neena Goveas,
- Abstract summary: A core challenge in AI-guided autonomy is enabling agents to navigate realistically and effectively in previously unseen environments.<n>We propose UAV-VLN, a novel end-to-end Vision-Language Navigation framework for Unmanned Aerial Vehicles (UAVs)<n>Our system interprets free-form natural language instructions, grounds them into visual observations, and plans feasible aerial trajectories in diverse environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A core challenge in AI-guided autonomy is enabling agents to navigate realistically and effectively in previously unseen environments based on natural language commands. We propose UAV-VLN, a novel end-to-end Vision-Language Navigation (VLN) framework for Unmanned Aerial Vehicles (UAVs) that seamlessly integrates Large Language Models (LLMs) with visual perception to facilitate human-interactive navigation. Our system interprets free-form natural language instructions, grounds them into visual observations, and plans feasible aerial trajectories in diverse environments. UAV-VLN leverages the common-sense reasoning capabilities of LLMs to parse high-level semantic goals, while a vision model detects and localizes semantically relevant objects in the environment. By fusing these modalities, the UAV can reason about spatial relationships, disambiguate references in human instructions, and plan context-aware behaviors with minimal task-specific supervision. To ensure robust and interpretable decision-making, the framework includes a cross-modal grounding mechanism that aligns linguistic intent with visual context. We evaluate UAV-VLN across diverse indoor and outdoor navigation scenarios, demonstrating its ability to generalize to novel instructions and environments with minimal task-specific training. Our results show significant improvements in instruction-following accuracy and trajectory efficiency, highlighting the potential of LLM-driven vision-language interfaces for safe, intuitive, and generalizable UAV autonomy.
Related papers
- OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction [95.6266030753644]
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions.<n>Existing approaches require fine-tuning pre-trained vision-language models (VLMs) as visual and language features are independently fed into downstream policies.<n>We propose OTTER, a novel VLA architecture that leverages existing alignments through explicit, text-aware visual feature extraction.
arXiv Detail & Related papers (2025-03-05T18:44:48Z) - UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility [33.73170899086857]
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains.<n>This paper explores the integration of large language models (LLMs) and UAVs.<n>It categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge.
arXiv Detail & Related papers (2025-01-04T17:32:12Z) - UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation [71.97405667493477]
We introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN.<n>It enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features.<n>UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
arXiv Detail & Related papers (2024-11-25T02:44:59Z) - Integrating Large Language Models for UAV Control in Simulated Environments: A Modular Interaction Approach [0.3495246564946556]
This study explores the application of Large Language Models in UAV control.
By enabling UAVs to interpret and respond to natural language commands, LLMs simplify the UAV control and usage.
The paper discusses several key areas where LLMs can impact UAV technology, including autonomous decision-making, dynamic mission planning, enhanced situational awareness, and improved safety protocols.
arXiv Detail & Related papers (2024-10-23T06:56:53Z) - Towards Realistic UAV Vision-Language Navigation: Platform, Benchmark, and Methodology [38.2096731046639]
Recent efforts in UAV vision-language navigation predominantly adopt ground-based VLN settings.
We propose solutions from three perspectives: platform, benchmark, and methodology.
arXiv Detail & Related papers (2024-10-09T17:29:01Z) - OVER-NAV: Elevating Iterative Vision-and-Language Navigation with Open-Vocabulary Detection and StructurEd Representation [96.46961207887722]
OVER-NAV aims to go over and beyond the current arts of IVLN techniques.
To fully exploit the interpreted navigation data, we introduce a structured representation, coded Omnigraph.
arXiv Detail & Related papers (2024-03-26T02:34:48Z) - LangNav: Language as a Perceptual Representation for Navigation [63.90602960822604]
We explore the use of language as a perceptual representation for vision-and-language navigation (VLN)
Our approach uses off-the-shelf vision systems for image captioning and object detection to convert an agent's egocentric panoramic view at each time step into natural language descriptions.
arXiv Detail & Related papers (2023-10-11T20:52:30Z) - AerialVLN: Vision-and-Language Navigation for UAVs [23.40363176320464]
We propose a new task named AerialVLN, which is UAV-based and towards outdoor environments.
We develop a 3D simulator rendered by near-realistic pictures of 25 city-level scenarios.
We find that there is still a significant gap between the baseline model and human performance, which suggests AerialVLN is a new challenging task.
arXiv Detail & Related papers (2023-08-13T09:55:04Z) - LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language,
Vision, and Action [76.71101507291473]
We present a system, LM-Nav, for robotic navigation that enjoys the benefits of training on unannotated large datasets of trajectories.
We show that such a system can be constructed entirely out of pre-trained models for navigation (ViNG), image-language association (CLIP), and language modeling (GPT-3), without requiring any fine-tuning or language-annotated robot data.
arXiv Detail & Related papers (2022-07-10T10:41:50Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
Vision-and-Language Navigation (VLN) is a task where agents must decide how to move through a 3D environment to reach a goal.
One of the problems of the VLN task is data scarcity since it is difficult to collect enough navigation paths with human-annotated instructions for interactive environments.
We propose an adversarial-driven counterfactual reasoning model that can consider effective conditions instead of low-quality augmented data.
arXiv Detail & Related papers (2019-11-17T18:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.