DGSolver: Diffusion Generalist Solver with Universal Posterior Sampling for Image Restoration
- URL: http://arxiv.org/abs/2504.21487v1
- Date: Wed, 30 Apr 2025 10:12:48 GMT
- Title: DGSolver: Diffusion Generalist Solver with Universal Posterior Sampling for Image Restoration
- Authors: Hebaixu Wang, Jing Zhang, Haonan Guo, Di Wang, Jiayi Ma, Bo Du,
- Abstract summary: bfDGr is a diffusion solver with universal posterior sampling.<n>Code and models will be available at https://github.com/MiliLab/DGr.
- Score: 49.16449955997501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have achieved remarkable progress in universal image restoration. While existing methods speed up inference by reducing sampling steps, substantial step intervals often introduce cumulative errors. Moreover, they struggle to balance the commonality of degradation representations and restoration quality. To address these challenges, we introduce \textbf{DGSolver}, a diffusion generalist solver with universal posterior sampling. We first derive the exact ordinary differential equations for generalist diffusion models and tailor high-order solvers with a queue-based accelerated sampling strategy to improve both accuracy and efficiency. We then integrate universal posterior sampling to better approximate manifold-constrained gradients, yielding a more accurate noise estimation and correcting errors in inverse inference. Extensive experiments show that DGSolver outperforms state-of-the-art methods in restoration accuracy, stability, and scalability, both qualitatively and quantitatively. Code and models will be available at https://github.com/MiliLab/DGSolver.
Related papers
- An Ordinary Differential Equation Sampler with Stochastic Start for Diffusion Bridge Models [13.00429687431982]
Diffusion bridge models initialize the generative process from corrupted images instead of pure Gaussian noise.<n>Existing diffusion bridge models often rely on Differential Equation samplers, which result in slower inference speed.<n>We propose a high-order ODE sampler with a start for diffusion bridge models.<n>Our method is fully compatible with pretrained diffusion bridge models and requires no additional training.
arXiv Detail & Related papers (2024-12-28T03:32:26Z) - Decoupled Data Consistency with Diffusion Purification for Image Restoration [15.043002968696978]
We propose a novel diffusion-based image restoration solver that addresses issues by decoupling the reverse process from the data consistency steps.
Our approach demonstrates versatility, making it highly adaptable for efficient problem-solving in latent space.
The efficacy of our approach is validated through comprehensive experiments across various image restoration tasks, including image denoising, deblurring, inpainting, and super-resolution.
arXiv Detail & Related papers (2024-03-10T00:47:05Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.