Generative AI in Financial Institution: A Global Survey of Opportunities, Threats, and Regulation
- URL: http://arxiv.org/abs/2504.21574v1
- Date: Wed, 30 Apr 2025 12:25:30 GMT
- Title: Generative AI in Financial Institution: A Global Survey of Opportunities, Threats, and Regulation
- Authors: Bikash Saha, Nanda Rani, Sandeep Kumar Shukla,
- Abstract summary: Generative Artificial Intelligence (GenAI) is rapidly reshaping the global financial landscape.<n>This survey provides an overview of GenAI adoption across the financial ecosystem.<n>We discuss emerging threats such as AI-generated phishing, deepfake-enabled fraud, and adversarial attacks on AI systems.
- Score: 3.410195565199523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Artificial Intelligence (GenAI) is rapidly reshaping the global financial landscape, offering unprecedented opportunities to enhance customer engagement, automate complex workflows, and extract actionable insights from vast financial data. This survey provides an overview of GenAI adoption across the financial ecosystem, examining how banks, insurers, asset managers, and fintech startups worldwide are integrating large language models and other generative tools into their operations. From AI-powered virtual assistants and personalized financial advisory to fraud detection and compliance automation, GenAI is driving innovation across functions. However, this transformation comes with significant cybersecurity and ethical risks. We discuss emerging threats such as AI-generated phishing, deepfake-enabled fraud, and adversarial attacks on AI systems, as well as concerns around bias, opacity, and data misuse. The evolving global regulatory landscape is explored in depth, including initiatives by major financial regulators and international efforts to develop risk-based AI governance. Finally, we propose best practices for secure and responsible adoption - including explainability techniques, adversarial testing, auditability, and human oversight. Drawing from academic literature, industry case studies, and policy frameworks, this chapter offers a perspective on how the financial sector can harness GenAI's transformative potential while navigating the complex risks it introduces.
Related papers
- In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI [93.33036653316591]
We call for three interventions to advance system safety.<n>First, we propose using standardized AI flaw reports and rules of engagement for researchers.<n>Second, we propose GPAI system providers adopt broadly-scoped flaw disclosure programs.<n>Third, we advocate for the development of improved infrastructure to coordinate distribution of flaw reports.
arXiv Detail & Related papers (2025-03-21T05:09:46Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability.
The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories.
arXiv Detail & Related papers (2025-02-19T05:58:52Z) - Safety is Essential for Responsible Open-Ended Systems [47.172735322186]
Open-Endedness is the ability of AI systems to continuously and autonomously generate novel and diverse artifacts or solutions.<n>This position paper argues that the inherently dynamic and self-propagating nature of Open-Ended AI introduces significant, underexplored risks.
arXiv Detail & Related papers (2025-02-06T21:32:07Z) - Artificial intelligence and cybersecurity in banking sector: opportunities and risks [0.0]
Machine learning (ML) enables systems to adapt and learn from vast datasets.<n>This study highlights the dual-use nature of AI tools, which can be used by malicious users.<n>The paper emphasizes the importance of developing machine learning models with key characteristics such as security, trust, resilience and robustness.
arXiv Detail & Related papers (2024-11-28T22:09:55Z) - The Role of AI in Financial Forecasting: ChatGPT's Potential and Challenges [0.9217021281095907]
The outlook for the future of artificial intelligence (AI) in the financial sector, especially in financial forecasting.
The dynamics of AI technology, including deep learning, reinforcement learning, and integration with blockchAIn and the Internet of Things.
The integration of AI challenges regulatory and ethical issues in the financial sector, as well as the implications for data privacy protection.
arXiv Detail & Related papers (2024-11-07T15:35:16Z) - Redefining Finance: The Influence of Artificial Intelligence (AI) and Machine Learning (ML) [2.3931689873603594]
With rapid transformation of technologies, the fusion of Artificial Intelligence (AI) and Machine Learning (ML) in finance is disrupting the entire ecosystem.
The segments of financial institutions which are getting heavily influenced are retail banking, wealth management, corporate banking & payment ecosystem.
arXiv Detail & Related papers (2024-10-21T12:32:17Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - The AI Revolution: Opportunities and Challenges for the Finance Sector [12.486180180030964]
The application of AI in the financial sector is transforming the industry.
However, along with these benefits, AI also presents several challenges.
These include issues related to transparency, interpretability, fairness, accountability, and trustworthiness.
The use of AI in the financial sector further raises critical questions about data privacy and security.
Despite the global recognition of this need, there remains a lack of clear guidelines or legislation for AI use in finance.
arXiv Detail & Related papers (2023-08-31T08:30:09Z) - A Brief Overview of AI Governance for Responsible Machine Learning
Systems [3.222802562733787]
This position paper seeks to present a brief introduction to AI governance, which is a framework designed to oversee the responsible use of AI.
Due to the probabilistic nature of AI, the risks associated with it are far greater than traditional technologies.
arXiv Detail & Related papers (2022-11-21T23:48:51Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.