Conditional independence testing with a single realization of a multivariate nonstationary nonlinear time series
- URL: http://arxiv.org/abs/2504.21647v1
- Date: Wed, 30 Apr 2025 13:51:38 GMT
- Title: Conditional independence testing with a single realization of a multivariate nonstationary nonlinear time series
- Authors: Michael Wieck-Sosa, Michel F. C. Haddad, Aaditya Ramdas,
- Abstract summary: We introduce the first framework for conditional independence testing that works with a single realization of a nonstationary nonlinear process.<n>Key technical ingredients are time-varying nonlinear regression, time-varying covariance estimation, and a distribution-uniform strong Gaussian approximation.
- Score: 26.18999528465474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying relationships among stochastic processes is a key goal in disciplines that deal with complex temporal systems, such as economics. While the standard toolkit for multivariate time series analysis has many advantages, it can be difficult to capture nonlinear dynamics using linear vector autoregressive models. This difficulty has motivated the development of methods for variable selection, causal discovery, and graphical modeling for nonlinear time series, which routinely employ nonparametric tests for conditional independence. In this paper, we introduce the first framework for conditional independence testing that works with a single realization of a nonstationary nonlinear process. The key technical ingredients are time-varying nonlinear regression, time-varying covariance estimation, and a distribution-uniform strong Gaussian approximation.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
This paper proposes an efficient nonlinear modeling approach for multiple time series.
It incorporates nonlinear interactions among different time-series variables.
Experimental results show that the proposed algorithm improves the identification of the support of the VAR coefficients in a parsimonious manner.
arXiv Detail & Related papers (2023-09-29T11:42:59Z) - Probabilistic Learning of Multivariate Time Series with Temporal Irregularity [21.361823581838355]
Real-world time series often suffer from temporal irregularities, including nonuniform intervals and misaligned variables.
We propose an end-to-end framework that models temporal irregularities while capturing the joint distribution of variables at arbitrary continuous-time points.
arXiv Detail & Related papers (2023-06-15T14:08:48Z) - Kernel-based Joint Independence Tests for Multivariate Stationary and
Non-stationary Time Series [0.6749750044497732]
We introduce kernel-based statistical tests of joint independence in multivariate time series.
We show how the method robustly uncovers significant higher-order dependencies in synthetic examples.
Our method can aid in uncovering high-order interactions in data.
arXiv Detail & Related papers (2023-05-15T10:38:24Z) - An Analysis of Quantile Temporal-Difference Learning [53.36758478669685]
quantile temporal-difference learning (QTD) has proven to be a key component in several successful large-scale applications of reinforcement learning.
Unlike classical TD learning, QTD updates do not approximate contraction mappings, are highly non-linear, and may have multiple fixed points.
This paper is a proof of convergence to the fixed points of a related family of dynamic programming procedures with probability 1.
arXiv Detail & Related papers (2023-01-11T13:41:56Z) - On the Identifiability of Nonlinear ICA: Sparsity and Beyond [20.644375143901488]
How to make the nonlinear ICA model identifiable up to certain trivial indeterminacies is a long-standing problem in unsupervised learning.
Recent breakthroughs reformulate the standard independence assumption of sources as conditional independence given some auxiliary variables.
We show that under specific instantiations of such constraints, the independent latent sources can be identified from their nonlinear mixtures up to a permutation.
arXiv Detail & Related papers (2022-06-15T18:24:22Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
We make a emphprecise characterization of the Hessian eigenspectra for a broad family of nonlinear models.
Our analysis takes a step forward to identify the origin of many striking features observed in more complex machine learning models.
arXiv Detail & Related papers (2021-03-02T06:59:52Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
We study the classical problem of recovering a multidimensional source process from observations of mixtures of this process.
We show that this recovery is possible for many popular models of processes (up to order and monotone scaling of their coordinates) if the mixture is given by a sufficiently differentiable, invertible function.
arXiv Detail & Related papers (2021-02-04T20:28:44Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.