論文の概要: Traceback of Poisoning Attacks to Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2504.21668v1
- Date: Wed, 30 Apr 2025 14:10:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 18:27:21.461376
- Title: Traceback of Poisoning Attacks to Retrieval-Augmented Generation
- Title(参考訳): 検索型世代に対する毒殺事件の追跡
- Authors: Baolei Zhang, Haoran Xin, Minghong Fang, Zhuqing Liu, Biao Yi, Tong Li, Zheli Liu,
- Abstract要約: 研究によると、RAGの毒殺攻撃に対する感受性が明らかとなり、攻撃者は知識データベースに有毒なテキストを注入した。
既存の防衛は、主に推論時間の緩和に焦点を当てており、高度な攻撃に対して不十分であることが証明されている。
本稿では,RAGの最初のトレースバックシステムであるRAGForensicsを紹介し,攻撃に責任を持つ知識データベース内の有毒テキストを識別する。
- 参考スコア(独自算出の注目度): 10.19539347377776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) integrated with retrieval-augmented generation (RAG) systems improve accuracy by leveraging external knowledge sources. However, recent research has revealed RAG's susceptibility to poisoning attacks, where the attacker injects poisoned texts into the knowledge database, leading to attacker-desired responses. Existing defenses, which predominantly focus on inference-time mitigation, have proven insufficient against sophisticated attacks. In this paper, we introduce RAGForensics, the first traceback system for RAG, designed to identify poisoned texts within the knowledge database that are responsible for the attacks. RAGForensics operates iteratively, first retrieving a subset of texts from the database and then utilizing a specially crafted prompt to guide an LLM in detecting potential poisoning texts. Empirical evaluations across multiple datasets demonstrate the effectiveness of RAGForensics against state-of-the-art poisoning attacks. This work pioneers the traceback of poisoned texts in RAG systems, providing a practical and promising defense mechanism to enhance their security.
- Abstract(参考訳): 大規模言語モデル (LLM) と検索拡張生成システム (RAG) の統合により, 外部知識源の活用により精度が向上する。
しかし、最近の研究は、RAGが毒物攻撃に対して感受性があることを明らかにしており、攻撃者は毒物テキストを知識データベースに注入し、攻撃者が望んだ反応をもたらす。
既存の防衛は、主に推論時間の緩和に焦点を当てており、高度な攻撃に対して不十分であることが証明されている。
本稿では,攻撃の責任を負う知識データベース内の有毒テキストを識別するために,RAGの最初のトレースバックシステムであるRAGForensicsを紹介する。
RAGForensics は反復的に動作し、まずデータベースからテキストのサブセットを取得し、次に特殊なプロンプトを使って LLM を誘導して潜在的に有毒なテキストを検出する。
複数のデータセットにわたる実証的な評価は、最先端の中毒攻撃に対するRAGForensicsの有効性を示している。
この研究は、RAGシステムにおける有毒テキストのトレースの先駆者であり、彼らのセキュリティを強化するための実用的で有望な防衛メカニズムを提供する。
関連論文リスト
- Practical Poisoning Attacks against Retrieval-Augmented Generation [9.320227105592917]
大規模言語モデル(LLM)は、印象的な自然言語処理能力を示しているが、幻覚や時代遅れの知識といった課題に直面している。
Retrieval-Augmented Generation (RAG)は、これらの問題を緩和するための最先端のアプローチとして登場した。
我々は、攻撃者が1つの有毒テキストだけを注入するRAGシステムに対する実用的な中毒攻撃であるCorruptRAGを提案する。
論文 参考訳(メタデータ) (2025-04-04T21:49:42Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
マルチモーダル検索強化世代(RAG)は視覚言語モデル(VLM)の視覚的推論能力を向上させる
本研究では,マルチモーダルRAGシステムに対する最初の知識中毒攻撃であるtextitPoisoned-MRAGを紹介する。
論文 参考訳(メタデータ) (2025-03-08T15:46:38Z) - MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks [109.53357276796655]
Retrieval Augmented Generation (RAG) を備えたマルチモーダル大言語モデル(MLLM)
RAGはクエリ関連外部知識の応答を基盤としてMLLMを強化する。
この依存は、知識中毒攻撃(英語版)という、危険だが未発見の安全リスクを生じさせる。
本稿では,2つの攻撃戦略を持つ新しい知識中毒攻撃フレームワークMM-PoisonRAGを提案する。
論文 参考訳(メタデータ) (2025-02-25T04:23:59Z) - Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
検索,リランカー,大型言語モデル(LLM)の埋め込みモデルは,コンテンツインジェクション攻撃に対して脆弱であることがわかった。
主な脅威は,(1) 意味不明な内容や有害な内容の挿入,(2) 関連性を高めるために,問合せ全体あるいはキークエリ用語の挿入,の2つである。
本研究は, 注射内容の配置や関連物質と非関連物質とのバランスなど, 攻撃の成功に影響を与える要因を系統的に検討した。
論文 参考訳(メタデータ) (2025-01-30T18:02:15Z) - RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented Generation through LLM Activation Analysis [3.706288937295861]
RevPRAGは、LLMの活性化を利用した、柔軟で自動化された検出パイプラインである。
複数のベンチマークデータセットとRAGアーキテクチャによる結果から,提案手法は真正の98%,偽正の1%に近い正の98%を達成できた。
論文 参考訳(メタデータ) (2024-11-28T06:29:46Z) - Backdoored Retrievers for Prompt Injection Attacks on Retrieval Augmented Generation of Large Language Models [0.0]
Retrieval Augmented Generation (RAG)は、大規模言語モデルと最新の情報検索を組み合わせることでこの問題に対処する。
本稿では、誤報以外の有害な目的に焦点をあて、RAGに対する即時注射攻撃について検討する。
我々は,既存のコーパス中毒技術を構築し,高密度レトリバー部品の微調整を目的とした新しいバックドアアタックを提案する。
論文 参考訳(メタデータ) (2024-10-18T14:02:34Z) - On the Vulnerability of Applying Retrieval-Augmented Generation within
Knowledge-Intensive Application Domains [34.122040172188406]
Retrieval-Augmented Generation (RAG)は、知識集約ドメインにおける大規模言語モデル(LLM)の性能向上を実証的に示している。
医学的Q&Aにおいて,RAGは普遍的な毒殺攻撃に弱いことが示唆された。
我々は、RAGの安全な使用を保証するために、新しい検出ベースの防御を開発する。
論文 参考訳(メタデータ) (2024-09-12T02:43:40Z) - AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases [73.04652687616286]
本稿では,RAG とRAG をベースとした LLM エージェントを標的とした最初のバックドア攻撃である AgentPoison を提案する。
従来のバックドア攻撃とは異なり、AgentPoisonは追加のモデルトレーニングや微調整を必要としない。
エージェントごとに、AgentPoisonは平均攻撃成功率を80%以上達成し、良質なパフォーマンスに最小限の影響を与える。
論文 参考訳(メタデータ) (2024-07-17T17:59:47Z) - Corpus Poisoning via Approximate Greedy Gradient Descent [48.5847914481222]
本稿では,HotFlip法をベースとした高密度検索システムに対する新たな攻撃手法として,近似グレディ・グラディエント・Descentを提案する。
提案手法は,複数のデータセットと複数のレトリバーを用いて高い攻撃成功率を達成し,未知のクエリや新しいドメインに一般化可能であることを示す。
論文 参考訳(メタデータ) (2024-06-07T17:02:35Z) - PoisonedRAG: Knowledge Corruption Attacks to Retrieval-Augmented Generation of Large Language Models [45.409248316497674]
大規模言語モデル(LLM)は、その例外的な生成能力により、顕著な成功を収めた。
Retrieval-Augmented Generation (RAG)は、これらの制限を緩和するための最先端技術である。
RAGシステムにおける知識データベースは,新たな,実用的な攻撃面を導入している。
この攻撃面に基づいて,RAGに対する最初の知識汚職攻撃であるPoisonedRAGを提案する。
論文 参考訳(メタデータ) (2024-02-12T18:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。