Traceback of Poisoning Attacks to Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2504.21668v1
- Date: Wed, 30 Apr 2025 14:10:02 GMT
- Title: Traceback of Poisoning Attacks to Retrieval-Augmented Generation
- Authors: Baolei Zhang, Haoran Xin, Minghong Fang, Zhuqing Liu, Biao Yi, Tong Li, Zheli Liu,
- Abstract summary: Research has revealed RAG's susceptibility to poisoning attacks, where the attacker injects poisoned texts into the knowledge database.<n>Existing defenses, which predominantly focus on inference-time mitigation, have proven insufficient against sophisticated attacks.<n>We introduce RAGForensics, the first traceback system for RAG, designed to identify poisoned texts within the knowledge database that are responsible for the attacks.
- Score: 10.19539347377776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) integrated with retrieval-augmented generation (RAG) systems improve accuracy by leveraging external knowledge sources. However, recent research has revealed RAG's susceptibility to poisoning attacks, where the attacker injects poisoned texts into the knowledge database, leading to attacker-desired responses. Existing defenses, which predominantly focus on inference-time mitigation, have proven insufficient against sophisticated attacks. In this paper, we introduce RAGForensics, the first traceback system for RAG, designed to identify poisoned texts within the knowledge database that are responsible for the attacks. RAGForensics operates iteratively, first retrieving a subset of texts from the database and then utilizing a specially crafted prompt to guide an LLM in detecting potential poisoning texts. Empirical evaluations across multiple datasets demonstrate the effectiveness of RAGForensics against state-of-the-art poisoning attacks. This work pioneers the traceback of poisoned texts in RAG systems, providing a practical and promising defense mechanism to enhance their security.
Related papers
- Practical Poisoning Attacks against Retrieval-Augmented Generation [9.320227105592917]
Large language models (LLMs) have demonstrated impressive natural language processing abilities but face challenges such as hallucination and outdated knowledge.<n>Retrieval-Augmented Generation (RAG) has emerged as a state-of-the-art approach to mitigate these issues.<n>We propose CorruptRAG, a practical poisoning attack against RAG systems in which the attacker injects only a single poisoned text.
arXiv Detail & Related papers (2025-04-04T21:49:42Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
Multimodal retrieval-augmented generation (RAG) enhances the visual reasoning capability of vision-language models (VLMs)<n>In this work, we introduce textitPoisoned-MRAG, the first knowledge poisoning attack on multimodal RAG systems.
arXiv Detail & Related papers (2025-03-08T15:46:38Z) - MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks [109.53357276796655]
Multimodal large language models (MLLMs) equipped with Retrieval Augmented Generation (RAG)<n>RAG enhances MLLMs by grounding responses in query-relevant external knowledge.<n>This reliance poses a critical yet underexplored safety risk: knowledge poisoning attacks.<n>We propose MM-PoisonRAG, a novel knowledge poisoning attack framework with two attack strategies.
arXiv Detail & Related papers (2025-02-25T04:23:59Z) - Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
We find that embedding models for retrieval, rerankers, and large language model (LLM) relevance judges are vulnerable to content injection attacks.<n>We identify two primary threats: (1) inserting unrelated or harmful content within passages that still appear deceptively "relevant", and (2) inserting entire queries or key query terms into passages to boost their perceived relevance.<n>Our study systematically examines the factors that influence an attack's success, such as the placement of injected content and the balance between relevant and non-relevant material.
arXiv Detail & Related papers (2025-01-30T18:02:15Z) - RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented Generation through LLM Activation Analysis [3.706288937295861]
RevPRAG is a flexible and automated detection pipeline that leverages the activations of LLMs for poisoned response detection.<n>Our results on multiple benchmark datasets and RAG architectures show our approach could achieve 98% true positive rate, while maintaining false positive rates close to 1%.
arXiv Detail & Related papers (2024-11-28T06:29:46Z) - Backdoored Retrievers for Prompt Injection Attacks on Retrieval Augmented Generation of Large Language Models [0.0]
Retrieval Augmented Generation (RAG) addresses this issue by combining Large Language Models with up-to-date information retrieval.
This paper investigates prompt injection attacks on RAG, focusing on malicious objectives beyond misinformation.
We build upon existing corpus poisoning techniques and propose a novel backdoor attack aimed at the fine-tuning process of the dense retriever component.
arXiv Detail & Related papers (2024-10-18T14:02:34Z) - On the Vulnerability of Applying Retrieval-Augmented Generation within
Knowledge-Intensive Application Domains [34.122040172188406]
Retrieval-Augmented Generation (RAG) has been empirically shown to enhance the performance of large language models (LLMs) in knowledge-intensive domains.
We show that RAG is vulnerable to universal poisoning attacks in medical Q&A.
We develop a new detection-based defense to ensure the safe use of RAG.
arXiv Detail & Related papers (2024-09-12T02:43:40Z) - AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases [73.04652687616286]
We propose AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base.
Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning.
On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance.
arXiv Detail & Related papers (2024-07-17T17:59:47Z) - Corpus Poisoning via Approximate Greedy Gradient Descent [48.5847914481222]
We propose Approximate Greedy Gradient Descent, a new attack on dense retrieval systems based on the widely used HotFlip method for generating adversarial passages.
We show that our method achieves a high attack success rate on several datasets and using several retrievers, and can generalize to unseen queries and new domains.
arXiv Detail & Related papers (2024-06-07T17:02:35Z) - PoisonedRAG: Knowledge Corruption Attacks to Retrieval-Augmented Generation of Large Language Models [45.409248316497674]
Large language models (LLMs) have achieved remarkable success due to their exceptional generative capabilities.
Retrieval-Augmented Generation (RAG) is a state-of-the-art technique to mitigate these limitations.
We find that the knowledge database in a RAG system introduces a new and practical attack surface.
Based on this attack surface, we propose PoisonedRAG, the first knowledge corruption attack to RAG.
arXiv Detail & Related papers (2024-02-12T18:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.