Common3D: Self-Supervised Learning of 3D Morphable Models for Common Objects in Neural Feature Space
- URL: http://arxiv.org/abs/2504.21749v1
- Date: Wed, 30 Apr 2025 15:42:23 GMT
- Title: Common3D: Self-Supervised Learning of 3D Morphable Models for Common Objects in Neural Feature Space
- Authors: Leonhard Sommer, Olaf Dünkel, Christian Theobalt, Adam Kortylewski,
- Abstract summary: 3D morphable models (3DMMs) are a powerful tool to represent the possible shapes and appearances of an object category.<n>We introduce a new method, Common3D, that learns 3DMMs of common objects in a fully self-supervised manner from a collection of object-centric videos.<n>Common3D is the first completely self-supervised method that can solve various vision tasks in a zero-shot manner.
- Score: 58.623106094568776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D morphable models (3DMMs) are a powerful tool to represent the possible shapes and appearances of an object category. Given a single test image, 3DMMs can be used to solve various tasks, such as predicting the 3D shape, pose, semantic correspondence, and instance segmentation of an object. Unfortunately, 3DMMs are only available for very few object categories that are of particular interest, like faces or human bodies, as they require a demanding 3D data acquisition and category-specific training process. In contrast, we introduce a new method, Common3D, that learns 3DMMs of common objects in a fully self-supervised manner from a collection of object-centric videos. For this purpose, our model represents objects as a learned 3D template mesh and a deformation field that is parameterized as an image-conditioned neural network. Different from prior works, Common3D represents the object appearance with neural features instead of RGB colors, which enables the learning of more generalizable representations through an abstraction from pixel intensities. Importantly, we train the appearance features using a contrastive objective by exploiting the correspondences defined through the deformable template mesh. This leads to higher quality correspondence features compared to related works and a significantly improved model performance at estimating 3D object pose and semantic correspondence. Common3D is the first completely self-supervised method that can solve various vision tasks in a zero-shot manner.
Related papers
- Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning
of 3D Pose [10.028521796737314]
We study the problem of learning to estimate the 3D object pose from a few labelled examples and a collection of unlabelled data.
Our main contribution is a learning framework, neural view synthesis and matching, that can transfer the 3D pose annotation from the labelled to unlabelled images reliably.
arXiv Detail & Related papers (2021-10-27T06:53:53Z) - Multi-Category Mesh Reconstruction From Image Collections [90.24365811344987]
We present an alternative approach that infers the textured mesh of objects combining a series of deformable 3D models and a set of instance-specific deformation, pose, and texture.
Our method is trained with images of multiple object categories using only foreground masks and rough camera poses as supervision.
Experiments show that the proposed framework can distinguish between different object categories and learn category-specific shape priors in an unsupervised manner.
arXiv Detail & Related papers (2021-10-21T16:32:31Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Learning Feature Aggregation for Deep 3D Morphable Models [57.1266963015401]
We propose an attention based module to learn mapping matrices for better feature aggregation across hierarchical levels.
Our experiments show that through the end-to-end training of the mapping matrices, we achieve state-of-the-art results on a variety of 3D shape datasets.
arXiv Detail & Related papers (2021-05-05T16:41:00Z) - Neural Articulated Radiance Field [90.91714894044253]
We present Neural Articulated Radiance Field (NARF), a novel deformable 3D representation for articulated objects learned from images.
Experiments show that the proposed method is efficient and can generalize well to novel poses.
arXiv Detail & Related papers (2021-04-07T13:23:14Z) - Building 3D Morphable Models from a Single Scan [3.472931603805115]
We propose a method for constructing generative models of 3D objects from a single 3D mesh.
Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes.
We show that our approach can be used to perform face recognition using only a single 3D scan.
arXiv Detail & Related papers (2020-11-24T23:08:14Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.