論文の概要: Nemotron-Research-Tool-N1: Exploring Tool-Using Language Models with Reinforced Reasoning
- arxiv url: http://arxiv.org/abs/2505.00024v2
- Date: Mon, 12 May 2025 03:01:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 14:13:13.012552
- Title: Nemotron-Research-Tool-N1: Exploring Tool-Using Language Models with Reinforced Reasoning
- Title(参考訳): Nemotron-Research-Tool-N1:強化推論を用いた言語モデルの探索
- Authors: Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu, Zhiding Yu, Guilin Liu,
- Abstract要約: ルールベースの強化学習は、大きな言語モデルにおけるツールコールを強化するために使用することができる。
ツールN1-7B/14Bはいくつかの主要なベンチマークでGPT-4oを上回った。
- 参考スコア(独自算出の注目度): 93.30252692375886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling large language models with external tools has become a pivotal strategy for extending their functionality beyond text space. To enhance LLMs' tool-calling abilities, previous approaches primarily rely on supervised fine-tuning (SFT) with trajectories distilled from stronger models, often resulting in imitative reasoning that limits generalization. In this work, we explore rule-based reinforcement learning to enhance tool-calling in LLMs, resulting in Nemotron-Research-Tool-N1, a series of tool-calling reasoning models. Rather than enforcing supervision over intermediate distilled reasoning traces, Tool-N1 is trained with a binary RL reward that assesses only the format validity and functional correctness of tool invocations. This lightweight supervision allows the model to develop reasoning strategies independently, without relying on annotated trajectories. Experiments on several major benchmarks show that Tool-N1-7B/14B clearly outperform GPT-4o. We conduct a systematic study on the design of rule-based reinforcement learning strategies for training tool-calling models. Using 5,518 distilled reasoning trajectories, we compare SFT, RL, and the SFT-then-RL pipeline, finding that the widely adopted SFT-then-RL paradigm does not necessarily outperform pure RL.
- Abstract(参考訳): 大規模な言語モデルを外部ツールで実装することは、テキスト空間を超えて機能を拡張する上で重要な戦略となっている。
LLMのツールコール能力を高めるために、従来のアプローチは主により強力なモデルから蒸留された軌跡を持つ教師付き微調整(SFT)に依存しており、しばしば一般化を制限する模倣的推論をもたらす。
本研究では,LLMにおけるツールコールの強化を目的としたルールベース強化学習について検討し,一連のツールコール推論モデルであるNemotron-Research-Tool-N1を提案する。
中間蒸留された推論トレースに対する監督を強制するのではなく、ツール-N1は、ツール呼び出しのフォーマットの妥当性と機能的正確性のみを評価するバイナリRL報酬で訓練される。
この軽量な監視により、注釈付き軌道に頼ることなく、モデルは推論戦略を独立して開発することができる。
いくつかの主要なベンチマークの実験では、Tool-N1-7B/14BはGPT-4oより明らかに優れていた。
本研究では,ツールコールモデル学習のためのルールベース強化学習戦略の設計に関する体系的研究を行う。
蒸留された5,518個の推論軌道を用いてSFT,RL,SFT-then-RLパイプラインを比較し,広く採用されているSFT-then-RLパラダイムが必ずしも純粋なRLより優れているとは限らないことを発見した。
関連論文リスト
- ReTool: Reinforcement Learning for Strategic Tool Use in LLMs [27.07998056454784]
ReToolは、ツール統合学習によるロングフォーム推論を強化する。
モデルは400のトレーニングステップで67%の精度を達成する。
注目すべきは、ReTool-32Bが72.5%の精度で設定できることだ。
論文 参考訳(メタデータ) (2025-04-15T18:10:22Z) - R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model [70.77691645678804]
非SFT 2Bモデルのみを用いたマルチモーダル推論における創発的特性の再現に成功した最初の例を示す。
本モデルはCVBenchで59.47%の精度を達成し, ベースモデルを約30%, SFT設定を2%以上上回った。
さらに,RLとインストラクションモデルを用いてR1のような推論を行おうとする試みの失敗と知見を共有した。
論文 参考訳(メタデータ) (2025-03-07T04:21:47Z) - START: Self-taught Reasoner with Tools [51.38785489790888]
ツール統合長チェーン・オブ・シークレット(CoT)推論LSMであるSTART(Self-Taught Reasoner with Tools)を紹介する。
STARTは複雑な計算、自己チェック、多様な方法の探索、そして自己老化を行うことができる。
基礎となるQwQ-32Bを著しく上回り、最先端のオープンウェイトモデルR1-Distill-Qwen-32Bに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2025-03-06T17:11:51Z) - AlphaMaze: Enhancing Large Language Models' Spatial Intelligence via GRPO [0.0]
大きな言語モデル(LLM)は、言語処理において印象的な能力を示してきたが、視覚的な空間的推論を必要とするタスクにしばしば苦労している。
迷路ナビゲーションのための視覚的推論能力を備えた標準LLMの2段階学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-20T16:05:18Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
我々は,外部ツール利用のための適応型意思決定戦略であるMeCoを提案する。
MeCoは表現空間の高レベル認知信号をキャプチャし、ツールを呼び出すタイミングを指示する。
実験の結果,MeCoはLSMの内部認知信号を正確に検出し,ツール使用による意思決定を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2025-02-18T15:45:01Z) - Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な能力を示した。
既存のアプローチは主に、効果的なテストタイムスケーリングを達成するために、模倣学習と苦労に依存しています。
我々は、探索を奨励し、推論スケーリングを理解することで、強化学習をスケールするためにT1を提案する。
論文 参考訳(メタデータ) (2025-01-20T18:33:33Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
本稿では,外部観測から推論プロセスを取り除き,トークン消費量を大幅に削減するモジュラーパラダイムReWOOを提案する。
マルチステップ推論ベンチマークであるHotpotQAにおいて,ReWOOは5倍のトークン効率と4%の精度向上を実現している。
本稿では,175B GPT3.5から7B LLaMAへの推論能力をオフロードし,真に効率的でスケーラブルなALMシステムの可能性を示す。
論文 参考訳(メタデータ) (2023-05-23T00:16:48Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
そこで本稿では,提案するハイブリッドバックボーンアーキテクチャを自動検索するOP-NASアルゴリズムを提案する。
提案するOP-NASの効率を向上させるために,探索アルゴリズムと候補モデルの評価を最適化する。
実験の結果、検索されたアーキテクチャ(AutoBERT-Zero)は、様々な下流タスクにおいてBERTとそのバリエーションの異なるモデル容量を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-07-15T16:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。