Learning to Plan Before Answering: Self-Teaching LLMs to Learn Abstract Plans for Problem Solving
- URL: http://arxiv.org/abs/2505.00031v1
- Date: Mon, 28 Apr 2025 06:32:58 GMT
- Title: Learning to Plan Before Answering: Self-Teaching LLMs to Learn Abstract Plans for Problem Solving
- Authors: Jin Zhang, Flood Sung, Zhilin Yang, Yang Gao, Chongjie Zhang,
- Abstract summary: We introduce a novel self-training algorithm for large language models (LLM)<n>LEarning to Plan before Answering (LEPA) trains the LLM to formulate anticipatory plans, which serve as abstract meta-knowledge for problem-solving.<n>During model optimization, the LLM is trained to predict both the refined plans and the corresponding solutions.
- Score: 41.974457807896236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of large language model (LLM) post-training, the effectiveness of utilizing synthetic data generated by the LLM itself has been well-presented. However, a key question remains unaddressed: what essential information should such self-generated data encapsulate? Existing approaches only produce step-by-step problem solutions, and fail to capture the abstract meta-knowledge necessary for generalization across similar problems. Drawing insights from cognitive science, where humans employ high-level abstraction to simplify complex problems before delving into specifics, we introduce a novel self-training algorithm: LEarning to Plan before Answering (LEPA). LEPA trains the LLM to formulate anticipatory plans, which serve as abstract meta-knowledge for problem-solving, before engaging with the intricacies of problems. This approach not only outlines the solution generation path but also shields the LLM from the distraction of irrelevant details. During data generation, LEPA first crafts an anticipatory plan based on the problem, and then generates a solution that aligns with both the plan and the problem. LEPA refines the plan through self-reflection, aiming to acquire plans that are instrumental in yielding correct solutions. During model optimization, the LLM is trained to predict both the refined plans and the corresponding solutions. By efficiently extracting and utilizing the anticipatory plans, LEPA demonstrates remarkable superiority over conventional algorithms on various challenging natural language reasoning benchmarks.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
We propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization.<n>It is the first expert-free planning framework since we combine the world knowledge from Large Language Models with formal reasoning.<n>Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
arXiv Detail & Related papers (2025-01-25T13:33:22Z) - Non-myopic Generation of Language Models for Reasoning and Planning [45.75146679449453]
This paper proposes a novel method, Predictive-Decoding, that leverages Model Predictive Control to enhance planning accuracy.
Our experiments show significant improvements in a wide range of tasks for math, coding, and agents.
arXiv Detail & Related papers (2024-10-22T17:13:38Z) - Planning Anything with Rigor: General-Purpose Zero-Shot Planning with LLM-based Formalized Programming [13.246017517159043]
Large language models (LLMs) have recently demonstrated strong potential in solving planning problems.<n>We propose LLpreview, a framework that leverages LLMs to capture key information from planning problems and formally formulate and solve them as optimization problems from scratch.<n>We apply LLpreview to 9 planning problems, ranging from multi-constraint decision making to multi-step planning problems, and demonstrate that LL achieves on average 83.7% and 86.8% optimal rate across 9 tasks for GPTo and Claude 3.5 Sonnet.
arXiv Detail & Related papers (2024-10-15T23:20:54Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
We propose textbftextitThought Propagation (TP) to enhance the complex reasoning ability of Large Language Models.
TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one.
TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch.
arXiv Detail & Related papers (2023-10-06T01:40:09Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z) - Learning to Plan with Natural Language [111.76828049344839]
Large Language Models (LLMs) have shown remarkable performance in various basic natural language tasks.
For completing the complex task, we still need a plan for the task to guide LLMs to generate the specific solutions step by step.
We propose the Learning to Plan method, which involves two phases: (1) In the first learning task plan phase, it iteratively updates the task plan with new step-by-step solutions and behavioral instructions, which are obtained by prompting LLMs to derive from training error feedback.
arXiv Detail & Related papers (2023-04-20T17:09:12Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
Large Language Models (LLMs) have been the subject of active research, significantly advancing the field of Natural Language Processing (NLP)
We introduce Plansformer; an LLM fine-tuned on planning problems and capable of generating plans with favorable behavior in terms of correctness and length with reduced knowledge-engineering efforts.
For one configuration of Plansformer, we achieve 97% valid plans, out of which 95% are optimal for Towers of Hanoi - a puzzle-solving domain.
arXiv Detail & Related papers (2022-12-16T19:06:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.