A Report on the llms evaluating the high school questions
- URL: http://arxiv.org/abs/2505.00057v1
- Date: Wed, 30 Apr 2025 11:54:23 GMT
- Title: A Report on the llms evaluating the high school questions
- Authors: Zhu Jiawei, Chen Wei,
- Abstract summary: This report aims to evaluate the performance of large language models (LLMs) in solving high school science questions.<n>A comprehensive assessment was conducted based on metrics such as accuracy, response time, logical reasoning, and creativity.<n>The findings indicate that although LLMs perform excellently in certain aspects, there is still room for improvement in logical reasoning and creative problem-solving.
- Score: 5.270268762282824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report aims to evaluate the performance of large language models (LLMs) in solving high school science questions and to explore their potential applications in the educational field. With the rapid development of LLMs in the field of natural language processing, their application in education has attracted widespread attention. This study selected mathematics exam questions from the college entrance examinations (2019-2023) as evaluation data and utilized at least eight LLM APIs to provide answers. A comprehensive assessment was conducted based on metrics such as accuracy, response time, logical reasoning, and creativity. Through an in-depth analysis of the evaluation results, this report reveals the strengths and weaknesses of LLMs in handling high school science questions and discusses their implications for educational practice. The findings indicate that although LLMs perform excellently in certain aspects, there is still room for improvement in logical reasoning and creative problem-solving. This report provides an empirical foundation for further research and application of LLMs in the educational field and offers suggestions for improvement.
Related papers
- Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-Oasis [78.07225438556203]
We introduce LLM-Oasis, the largest resource for training end-to-end factuality evaluators.
It is constructed by extracting claims from Wikipedia, falsifying a subset of these claims, and generating pairs of factual and unfactual texts.
We then rely on human annotators to both validate the quality of our dataset and to create a gold standard test set for factuality evaluation systems.
arXiv Detail & Related papers (2024-11-29T12:21:15Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - SciAssess: Benchmarking LLM Proficiency in Scientific Literature Analysis [26.111514038691837]
SciAssess is a benchmark for the comprehensive evaluation of Large Language Models (LLMs) in scientific literature analysis.
It aims to thoroughly assess the efficacy of LLMs by evaluating their capabilities in Memorization (L1), memorization (L2), and Analysis & Reasoning (L3)
It encompasses a variety of tasks drawn from diverse scientific fields, including biology, chemistry, material, and medicine.
arXiv Detail & Related papers (2024-03-04T12:19:28Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
We introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm.
We collect responses generated from large language models and annotate factuality labels in a fine-grained manner.
Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.
arXiv Detail & Related papers (2023-10-01T17:37:31Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
Large language model (LLM) has excellent performance and wide practical uses.
Existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios.
We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety.
Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system.
arXiv Detail & Related papers (2023-08-15T17:40:34Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
We introduce an expansive benchmark suite SciBench for Large Language Model (LLM)
SciBench contains a dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains.
The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%.
arXiv Detail & Related papers (2023-07-20T07:01:57Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
Large language models (LLMs) are gaining increasing popularity in both academia and industry.
This paper focuses on three key dimensions: what to evaluate, where to evaluate, and how to evaluate.
arXiv Detail & Related papers (2023-07-06T16:28:35Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
This paper introduces a comprehensive Chinese benchmark that covers various subjects, including natural science, social sciences, engineering, and humanities.
CMMLU fills the gap in evaluating the knowledge and reasoning capabilities of large language models within the Chinese context.
arXiv Detail & Related papers (2023-06-15T15:49:51Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.