SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models
- URL: http://arxiv.org/abs/2307.10635v3
- Date: Fri, 28 Jun 2024 08:24:13 GMT
- Title: SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models
- Authors: Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba, Shichang Zhang, Yizhou Sun, Wei Wang,
- Abstract summary: We introduce an expansive benchmark suite SciBench for Large Language Model (LLM)
SciBench contains a dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains.
The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%.
- Score: 70.5763210869525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations. To systematically examine the reasoning capabilities required for solving complex scientific problems, we introduce an expansive benchmark suite SciBench for LLMs. SciBench contains a carefully curated dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains. Based on the dataset, we conduct an in-depth benchmarking study of representative open-source and proprietary LLMs with various prompting strategies. The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms the others and some strategies that demonstrate improvements in certain problem-solving skills could result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
Related papers
- ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities.
This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset.
arXiv Detail & Related papers (2024-06-26T13:02:35Z) - SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models [35.98892300665275]
We introduce the SciKnowEval benchmark, a framework that evaluates large language models (LLMs) across five progressive levels of scientific knowledge.
These levels aim to assess the breadth and depth of scientific knowledge in LLMs, including memory, comprehension, reasoning, discernment, and application.
We benchmark 26 advanced open-source and proprietary LLMs using zero-shot and few-shot prompting strategies.
arXiv Detail & Related papers (2024-06-13T13:27:52Z) - Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B [48.45472563225202]
This paper introduces the MCT Self-Refine (MCTSr) algorithm, an innovative integration of Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS)
The algorithm constructs a Monte Carlo search tree through iterative processes of Selection, self-refine, self-evaluation, and Backpropagation.
Extensive experiments demonstrate MCTSr's efficacy in solving Olympiad-level mathematical problems.
arXiv Detail & Related papers (2024-06-11T16:01:07Z) - Can LLMs Solve longer Math Word Problems Better? [47.227621867242]
Math Word Problems (MWPs) are crucial for evaluating the capability of Large Language Models (LLMs)
This study pioneers the exploration of Context Length Generalizability (CoLeG)
Two novel metrics are proposed to assess the efficacy and resilience of LLMs in solving these problems.
arXiv Detail & Related papers (2024-05-23T17:13:50Z) - Adversarial Math Word Problem Generation [6.92510069380188]
We propose a new paradigm for ensuring fair evaluation of large language models (LLMs)
We generate adversarial examples which preserve the structure and difficulty of the original questions aimed for assessment, but are unsolvable by LLMs.
We conduct experiments on various open- and closed-source LLMs, quantitatively and qualitatively demonstrating that our method significantly degrades their math problem-solving ability.
arXiv Detail & Related papers (2024-02-27T22:07:52Z) - Competition-Level Problems are Effective LLM Evaluators [121.15880285283116]
This paper aims to evaluate the reasoning capacities of large language models (LLMs) in solving recent programming problems in Codeforces.
We first provide a comprehensive evaluation of GPT-4's peiceived zero-shot performance on this task, considering various aspects such as problems' release time, difficulties, and types of errors encountered.
Surprisingly, theThoughtived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems.
arXiv Detail & Related papers (2023-12-04T18:58:57Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - NLPBench: Evaluating Large Language Models on Solving NLP Problems [41.01588131136101]
Large language models (LLMs) have shown promise in enhancing the capabilities of natural language processing (NLP)
We present a unique benchmarking dataset, NLPBench, comprising 378 college-level NLP questions spanning various NLP topics sourced from Yale University's prior final exams.
Our evaluation, centered on LLMs such as GPT-3.5/4, PaLM-2, and LLAMA-2, incorporates advanced prompting strategies like the chain-of-thought (CoT) and tree-of-thought (ToT)
arXiv Detail & Related papers (2023-09-27T13:02:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.