Open-systems tools for non-thermalizing closed quantum systems
- URL: http://arxiv.org/abs/2505.00116v1
- Date: Wed, 30 Apr 2025 18:38:08 GMT
- Title: Open-systems tools for non-thermalizing closed quantum systems
- Authors: Unnati Akhouri, Sarah Shandera, Jackson Henry,
- Abstract summary: We study constrained, symmetric quantum circuit dynamics that generate non-equilibrium steady states.<n>Each network can be described as an ensemble of open systems, a collection of qubits evolving with phase-covariant dynamics.<n>We quantify the distance of the steady states from the homogeneous steady state and further characterize them using the complexity of their mutual information networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design several examples of constrained, symmetric quantum circuit dynamics that generate non-equilibrium steady states. The qubit networks maintain local memory of the initial conditions and display inhomogeneous subsystem dynamics over long times, clearly distinguishable from approximately thermalizing networks of the same size. Each network can be described as an ensemble of open systems, a collection of qubits evolving with phase-covariant dynamics. Constraints from the conservation law and global unitary dynamics of the entire network bound the distribution of single-qubit dynamics in the ensemble, but different steady states are distinguishable by several measures. We quantify the distance of the steady states from the homogeneous steady state and further characterize them using the complexity of their mutual information networks, the volume of state space explored, a thermodynamic utility measure using extractable work, and correlated structure in the occurrence of non-completely positive qubit propagator maps.
Related papers
- Tensor Product Structure Geometry under Unitary Channels [0.0]
Locality is typically defined with respect to a product structure (TPS) which identifies the local subsystems of the quantum system.
We show that this TPS distance is related to scrambling properties of the dynamics between the local subsystems and coincides with the power of entangling of 2-unitaries.
For Hamiltonian evolutions at short times, the characteristic timescale of the TPS distance depends on scrambling rates determined by the strength of interactions between the local subsystems.
arXiv Detail & Related papers (2024-10-03T19:02:22Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Deep thermalization in Gaussian continuous-variable quantum systems [2.979579757819132]
We study the ensemble of pure states supported on a small subsystem of a few modes.<n>We find that the induced ensemble attains a universal form, independent of the choice of measurement basis.
arXiv Detail & Related papers (2024-05-09T00:01:23Z) - Effective dynamics of qubit networks via phase-covariant quantum ensembles [0.0]
We generate ensembles of phase-covariant maps associated to the individual spins of a closed quantum system.
The construction procedure suggests new ways to realize random families of open-system dynamics.
arXiv Detail & Related papers (2024-04-23T16:54:26Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - A Multisite Decomposition of the Tensor Network Path Integrals [0.0]
We extend the tensor network path integral (TNPI) framework to efficiently simulate quantum systems with local dissipative environments.
The MS-TNPI method is useful for studying a variety of extended quantum systems coupled with solvents.
arXiv Detail & Related papers (2021-09-20T17:55:53Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Non-equilibrium steady-states of memoryless quantum collision models [0.0]
We show that only a coupling Hamiltonian in the energy-preserving form drives the system to thermal equilibrium.
We characterize the specific form of system-environment interaction that drives the system to a steady-state exhibiting coherence in the energy eigenbasis.
arXiv Detail & Related papers (2020-01-06T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.