論文の概要: IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
- arxiv url: http://arxiv.org/abs/2505.00191v1
- Date: Wed, 30 Apr 2025 21:20:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.178509
- Title: IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
- Title(参考訳): IP-CRR:胸部放射線診断レポートの解釈可能な分類のための情報探索
- Authors: Yuyan Ge, Kwan Ho Ryan Chan, Pablo Messina, René Vidal,
- Abstract要約: 本稿では,放射線学レポートの分類のための解釈可能なフレームワークを提案する。
キーとなる考え方は、大量のレポートから最も情報性の高いクエリの集合を抽出し、これらのクエリとその対応する回答を使用して診断を予測することである。
提案手法の有効性を示すMIMIC-CXRデータセットの実験を行った。
- 参考スコア(独自算出の注目度): 31.359504909372884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of AI-based methods for analyzing radiology reports could lead to significant advances in medical diagnosis--from improving diagnostic accuracy to enhancing efficiency and reducing workload. However, the lack of interpretability in these methods has hindered their adoption in clinical settings. In this paper, we propose an interpretable-by-design framework for classifying radiology reports. The key idea is to extract a set of most informative queries from a large set of reports and use these queries and their corresponding answers to predict a diagnosis. Thus, the explanation for a prediction is, by construction, the set of selected queries and answers. We use the Information Pursuit framework to select informative queries, the Flan-T5 model to determine if facts are present in the report, and a classifier to predict the disease. Experiments on the MIMIC-CXR dataset demonstrate the effectiveness of the proposed method, highlighting its potential to enhance trust and usability in medical AI.
- Abstract(参考訳): 放射線医学レポートを分析するAIベースの手法の開発は、診断精度の向上から効率の向上、作業負荷の削減に至るまで、医療診断の大幅な進歩につながる可能性がある。
しかし,これらの方法の解釈可能性の欠如は臨床環境における導入を妨げている。
本稿では,放射線学報告を分類するための解釈可能なフレームワークを提案する。
キーとなる考え方は、大量のレポートから最も情報性の高いクエリの集合を抽出し、これらのクエリとその対応する回答を使用して診断を予測することである。
したがって、予測の説明は、構成上、選択されたクエリと回答の集合である。
本稿では,情報検索フレームワークを用いて情報検索を行い,Flan-T5モデルを用いて事実が報告されているかどうかを判断する。
MIMIC-CXRデータセットの実験は、提案手法の有効性を示し、医療用AIの信頼性とユーザビリティを高める可能性を強調している。
関連論文リスト
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
本研究は,AI支援医療診断における信頼性の重要課題について論じる。
本研究は,診断に自信がなければ,診断システムによる意思決定の回避を可能にする選択予測手法に焦点をあてる。
我々は、選択予測タスクにおける信頼性を高めるための新しい最先端手法であるHUQ-2を紹介する。
論文 参考訳(メタデータ) (2025-02-25T10:15:21Z) - FIND: Fine-grained Information Density Guided Adaptive Retrieval-Augmented Generation for Disease Diagnosis [13.806201934732321]
FIND(textbfFine-fine textbfInformation textbfDensity Guided Adaptive RAG)は、疾患診断シナリオにおけるRAGの信頼性を向上させる新しいフレームワークである。
論文 参考訳(メタデータ) (2025-02-20T14:52:36Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Xplainer: From X-Ray Observations to Explainable Zero-Shot Diagnosis [36.45569352490318]
臨床現場でのゼロショット診断のためのフレームワークであるXplainerを紹介した。
Xplainerは、コントラッシブ・ビジョン言語モデルの分類・記述アプローチをマルチラベル診断タスクに適用する。
我々の結果は、Xplainerが意思決定プロセスをより詳細に理解していることを示唆している。
論文 参考訳(メタデータ) (2023-03-23T16:07:31Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Query-Focused EHR Summarization to Aid Imaging Diagnosis [22.21438906817433]
本稿では,患者記録から関連するテキストスニペットを抽出し,大まかな症例要約を提供するモデルを提案し,評価する。
我々は,「未来」記録で観察される国際疾患分類(ICD)コード群を,「下流」診断のためのうるさいプロキシとして使用した。
我々は、ボストンのブリガム・アンド・ウーマンズ病院とMIMIC-IIIのEHRデータに基づいて、このモデルのバリエーションを訓練し、評価する。
論文 参考訳(メタデータ) (2020-04-09T16:32:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。