論文の概要: IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
- arxiv url: http://arxiv.org/abs/2505.00191v2
- Date: Tue, 12 Aug 2025 22:14:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 16:17:42.387396
- Title: IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
- Title(参考訳): IP-CRR:胸部放射線診断レポートの解釈可能な分類のための情報探索
- Authors: Yuyan Ge, Kwan Ho Ryan Chan, Pablo Messina, René Vidal,
- Abstract要約: 胸部X線診断レポートの分類のための解釈可能な設計フレームワークを提案する。
提案手法の有効性を示すMIMIC-CXRデータセットの実験を行った。
- 参考スコア(独自算出の注目度): 31.359504909372884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of AI-based methods to analyze radiology reports could lead to significant advances in medical diagnosis, from improving diagnostic accuracy to enhancing efficiency and reducing workload. However, the lack of interpretability of AI-based methods could hinder their adoption in clinical settings. In this paper, we propose an interpretable-by-design framework for classifying chest radiology reports. First, we extract a set of representative facts from a large set of reports. Then, given a new report, we query whether a small subset of the representative facts is entailed by the report, and predict a diagnosis based on the selected subset of query-answer pairs. The explanation for a prediction is, by construction, the set of selected queries and answers. We use the Information Pursuit framework to select the most informative queries, a natural language inference model to determine if a fact is entailed by the report, and a classifier to predict the disease. Experiments on the MIMIC-CXR dataset demonstrate the effectiveness of the proposed method, highlighting its potential to enhance trust and usability in medical AI.
- Abstract(参考訳): 放射線医学レポートを分析するAIベースの手法の開発は、診断精度の向上から効率の向上、作業負荷の削減に至るまで、医療診断の大幅な進歩につながる可能性がある。
しかし、AIベースの手法の解釈可能性の欠如は、臨床環境での採用を妨げる可能性がある。
本稿では,胸部X線診断レポートの分類のための解釈可能なフレームワークを提案する。
まず,報告の集合から代表的事実の集合を抽出する。
そこで,本報告では,代表事実の少数のサブセットが関連付けられているかどうかを問うとともに,選択した問合せ-問合せペアのサブセットに基づいて診断を予測する。
予測の説明は、構成上、選択されたクエリと回答の集合である。
我々は,最も情報に富むクエリの選択に情報探索フレームワーク,報告に関連があるかどうかを判断する自然言語推論モデル,疾患の予測に分類器を用いる。
MIMIC-CXRデータセットの実験は、提案手法の有効性を示し、医療用AIにおける信頼性とユーザビリティを高める可能性を強調している。
関連論文リスト
- Clinically Grounded Agent-based Report Evaluation: An Interpretable Metric for Radiology Report Generation [32.410641778559544]
ICARE (Interpretable and Clinicallygrounded Agent-based Report Evaluation) は、解釈可能な評価フレームワークである。
2つのエージェントは、それぞれが基礎的真実または生成されたレポートを持ち、臨床的に有意義な質問を発生し、互いにクイズする。
スコアを質問応答ペアにリンクすることで、ICAREは透明で解釈可能な評価を可能にする。
論文 参考訳(メタデータ) (2025-08-04T18:28:03Z) - KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs [39.47350988195002]
大きな言語モデル(LLM)は、診断予測に言語能力と生物医学的知識を活用することを約束している。
我々は,知識グラフ(KG)を用いた多エージェントアーキテクチャによるLLMに基づく診断予測を改善する推論手法であるKERAPを提案する。
本フレームワークは, マッピング用リンクエージェント, 構造化知識抽出用検索エージェント, 診断予測を反復的に洗練する予測エージェントから構成される。
論文 参考訳(メタデータ) (2025-07-03T16:35:11Z) - Revolutionizing Radiology Workflow with Factual and Efficient CXR Report Generation [0.0]
本稿では,胸部X線自動生成に特化して開発されたLLM中心の基盤モデルであるCXR-PathFinderを紹介する。
本稿では,専門的な臨床フィードバックを相手の学習フレームワークに統合する,ユニークな訓練パラダイムであるCGAFTを提案する。
我々の実験は、CXR-PathFinderが、様々なメトリクスで既存の最先端の医療ビジョン言語モデルを大幅に上回っていることを実証した。
論文 参考訳(メタデータ) (2025-06-01T18:47:49Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
本研究は,AI支援医療診断における信頼性の重要課題について論じる。
本研究は,診断に自信がなければ,診断システムによる意思決定の回避を可能にする選択予測手法に焦点をあてる。
我々は、選択予測タスクにおける信頼性を高めるための新しい最先端手法であるHUQ-2を紹介する。
論文 参考訳(メタデータ) (2025-02-25T10:15:21Z) - FIND: Fine-grained Information Density Guided Adaptive Retrieval-Augmented Generation for Disease Diagnosis [13.806201934732321]
FIND(textbfFine-fine textbfInformation textbfDensity Guided Adaptive RAG)は、疾患診断シナリオにおけるRAGの信頼性を向上させる新しいフレームワークである。
論文 参考訳(メタデータ) (2025-02-20T14:52:36Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Uncertainty-aware Medical Diagnostic Phrase Identification and Grounding [72.18719355481052]
MRG(Messical Report Grounding)と呼ばれる新しい課題について紹介する。
MRGは医療報告から診断フレーズとその対応する接地箱を直接エンドツーエンドで識別することを目的としている。
マルチモーダルな大規模言語モデルを用いて診断フレーズを予測する,堅牢で信頼性の高いフレームワークである uMedGround を提案する。
論文 参考訳(メタデータ) (2024-04-10T07:41:35Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Xplainer: From X-Ray Observations to Explainable Zero-Shot Diagnosis [36.45569352490318]
臨床現場でのゼロショット診断のためのフレームワークであるXplainerを紹介した。
Xplainerは、コントラッシブ・ビジョン言語モデルの分類・記述アプローチをマルチラベル診断タスクに適用する。
我々の結果は、Xplainerが意思決定プロセスをより詳細に理解していることを示唆している。
論文 参考訳(メタデータ) (2023-03-23T16:07:31Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Query-Focused EHR Summarization to Aid Imaging Diagnosis [22.21438906817433]
本稿では,患者記録から関連するテキストスニペットを抽出し,大まかな症例要約を提供するモデルを提案し,評価する。
我々は,「未来」記録で観察される国際疾患分類(ICD)コード群を,「下流」診断のためのうるさいプロキシとして使用した。
我々は、ボストンのブリガム・アンド・ウーマンズ病院とMIMIC-IIIのEHRデータに基づいて、このモデルのバリエーションを訓練し、評価する。
論文 参考訳(メタデータ) (2020-04-09T16:32:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。