AI-Enhanced Automatic Design of Efficient Underwater Gliders
- URL: http://arxiv.org/abs/2505.00222v1
- Date: Wed, 30 Apr 2025 23:55:44 GMT
- Title: AI-Enhanced Automatic Design of Efficient Underwater Gliders
- Authors: Peter Yichen Chen, Pingchuan Ma, Niklas Hagemann, John Romanishin, Wei Wang, Daniela Rus, Wojciech Matusik,
- Abstract summary: Building an automated design framework is challenging due to the complexities of representing glider shapes and the high computational costs associated with modeling complex solid-fluid interactions.<n>We introduce an AI-enhanced automated computational framework designed to overcome these limitations by enabling the creation of underwater robots with non-trivial hull shapes.<n>Our approach involves an algorithm that co-optimizes both shape and control signals, utilizing a reduced-order geometry representation and a differentiable neural-network-based fluid surrogate model.
- Score: 60.45821679800442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of novel autonomous underwater gliders has been hindered by limited shape diversity, primarily due to the reliance on traditional design tools that depend heavily on manual trial and error. Building an automated design framework is challenging due to the complexities of representing glider shapes and the high computational costs associated with modeling complex solid-fluid interactions. In this work, we introduce an AI-enhanced automated computational framework designed to overcome these limitations by enabling the creation of underwater robots with non-trivial hull shapes. Our approach involves an algorithm that co-optimizes both shape and control signals, utilizing a reduced-order geometry representation and a differentiable neural-network-based fluid surrogate model. This end-to-end design workflow facilitates rapid iteration and evaluation of hydrodynamic performance, leading to the discovery of optimal and complex hull shapes across various control settings. We validate our method through wind tunnel experiments and swimming pool gliding tests, demonstrating that our computationally designed gliders surpass manually designed counterparts in terms of energy efficiency. By addressing challenges in efficient shape representation and neural fluid surrogate models, our work paves the way for the development of highly efficient underwater gliders, with implications for long-range ocean exploration and environmental monitoring.
Related papers
- Learning Underwater Active Perception in Simulation [51.205673783866146]
Turbidity can jeopardise the whole mission as it may prevent correct visual documentation of the inspected structures.<n>Previous works have introduced methods to adapt to turbidity and backscattering.<n>We propose a simple yet efficient approach to enable high-quality image acquisition of assets in a broad range of water conditions.
arXiv Detail & Related papers (2025-04-23T06:48:38Z) - AMR-Transformer: Enabling Efficient Long-range Interaction for Complex Neural Fluid Simulation [33.63726923336252]
We propose AMR-Transformer, an efficient and accurate neural CFD-solving pipeline.<n>It integrates a novel adaptive mesh refinement scheme with a Navier-Stokes constraint-aware fast pruning module.<n>Our approach achieves an order-of-magnitude improvement in accuracy over baseline models.
arXiv Detail & Related papers (2025-03-13T11:16:42Z) - Underwater Soft Fin Flapping Motion with Deep Neural Network Based Surrogate Model [0.31457219084519]
This study presents a novel framework for precise force control of fin-actuated underwater robots by integrating a deep neural network (DNN)-based surrogate model with reinforcement learning (RL)<n>To address the complex interactions with the underwater environment and the high experimental costs, a surrogate model acts as a simulator for enabling efficient training for the RL agent.
arXiv Detail & Related papers (2025-02-05T12:57:53Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models [23.480913364381664]
Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers.
We present a novel, fully differentiable hybrid approach to FSI that combines a 2D numerical simulation for the deformable solid structure of the swimmer.
We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer.
arXiv Detail & Related papers (2022-03-30T15:21:44Z) - Physical Design using Differentiable Learned Simulators [9.380022457753938]
In inverse design, learned forward simulators are combined with gradient-based design optimization.
This framework produces high-quality designs by propagating through trajectories of hundreds of steps.
Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization.
arXiv Detail & Related papers (2022-02-01T19:56:39Z) - Designing Air Flow with Surrogate-assisted Phenotypic Niching [117.44028458220427]
We introduce surrogate-assisted phenotypic niching, a quality diversity algorithm.
It allows to discover a large, diverse set of behaviors by using computationally expensive phenotypic features.
In this work we discover the types of air flow in a 2D fluid dynamics optimization problem.
arXiv Detail & Related papers (2021-05-10T10:45:28Z) - DiffAqua: A Differentiable Computational Design Pipeline for Soft
Underwater Swimmers with Shape Interpolation [31.857848904652222]
We present a differentiable pipeline for co-designing a soft swimmer's geometry and controller.
Our pipeline unlocks gradient-based algorithms for discovering novel swimmer designs.
We demonstrate the efficacy of our method on various design problems such as fast, stable, and energy-efficient swimming.
arXiv Detail & Related papers (2021-04-02T01:18:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.