Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models
- URL: http://arxiv.org/abs/2204.12584v1
- Date: Wed, 30 Mar 2022 15:21:44 GMT
- Title: Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models
- Authors: Elvis Nava, John Zhang, Mike Yan Michelis, Tao Du, Pingchuan Ma,
Benjamin Grewe, Wojciech Matusik, Robert Katzschmann
- Abstract summary: Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers.
We present a novel, fully differentiable hybrid approach to FSI that combines a 2D numerical simulation for the deformable solid structure of the swimmer.
We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer.
- Score: 23.480913364381664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of
interest to biologists and engineers. Solving the fully coupled FSI equations
for incompressible Navier-Stokes and finite elasticity is computationally
expensive. Optimizing robotic swimmer design within such a system generally
involves cumbersome, gradient-free procedures on top of the already costly
simulation. To address this challenge we present a novel, fully differentiable
hybrid approach to FSI that combines a 2D direct numerical simulation for the
deformable solid structure of the swimmer and a physics-constrained neural
network surrogate to capture hydrodynamic effects of the fluid. For the
deformable simulation of the swimmer's body, we use state-of-the-art techniques
from the field of computer graphics to speed up the finite-element method
(FEM). For the fluid simulation, we use a U-Net architecture trained with a
physics-based loss function to predict the flow field at each time step. The
pressure and velocity field outputs from the neural network are sampled around
the boundary of our swimmer using an immersed boundary method (IBM) to compute
its swimming motion accurately and efficiently. We demonstrate the
computational efficiency and differentiability of our hybrid simulator on a 2D
carangiform swimmer. Since both the solid simulator and the hydrodynamics model
are automatically differentiable, we obtain a fully differentiable FSI
simulator that can be used for computational co-design of geometry and controls
for rigid and soft bodies immersed in fluids, such as minimizing drag,
maximizing speed, or maximizing efficiency via direct gradient-based
optimization.
Related papers
- Differentiable Turbulence II [0.0]
We develop a framework for integrating deep learning models into a generic finite element numerical scheme for solving the Navier-Stokes equations.
We show that the learned closure can achieve accuracy comparable to traditional large eddy simulation on a finer grid that amounts to an equivalent speedup of 10x.
arXiv Detail & Related papers (2023-07-25T14:27:49Z) - Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics [0.0]
Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials.
This paper provides a physics-informed machine learning (PIML) method by integrating neural networks with the governing physical laws to predict the melt pool dynamics.
The data-efficient PINN model is attributed to the soft penalty by incorporating governing partial differential equations (PDEs), initial conditions, and boundary conditions in the PINN model.
arXiv Detail & Related papers (2023-07-23T12:12:44Z) - Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes [37.69303106863453]
We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers.
Our approach combines the expressive power of a quantum model with the flexibility of a physics-informed neural network, resulting in a 21% higher accuracy compared to a purely classical neural network.
arXiv Detail & Related papers (2023-04-21T20:49:29Z) - FluidLab: A Differentiable Environment for Benchmarking Complex Fluid
Manipulation [80.63838153351804]
We introduce FluidLab, a simulation environment with a diverse set of manipulation tasks involving complex fluid dynamics.
At the heart of our platform is a fully differentiable physics simulator, providing GPU-accelerated simulations and gradient calculations.
We propose several domain-specific optimization schemes coupled with differentiable physics.
arXiv Detail & Related papers (2023-03-04T07:24:22Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Deep Random Vortex Method for Simulation and Inference of Navier-Stokes
Equations [69.5454078868963]
Navier-Stokes equations are significant partial differential equations that describe the motion of fluids such as liquids and air.
With the development of AI techniques, several approaches have been designed to integrate deep neural networks in simulating and inferring the fluid dynamics governed by incompressible Navier-Stokes equations.
We propose the emphDeep Random Vortex Method (DRVM), which combines the neural network with a random vortex dynamics system equivalent to the Navier-Stokes equation.
arXiv Detail & Related papers (2022-06-20T04:58:09Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
We use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows.
For both direct numerical simulation of turbulence and large eddy simulation, our results are as accurate as baseline solvers with 8-10x finer resolution in each spatial dimension.
Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
arXiv Detail & Related papers (2021-01-28T19:10:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize [7.707887663337803]
Recent deep learning based approaches promise vast speed-ups but do not generalize to new fluid domains.
We propose a novel physics-constrained training approach that generalizes to new fluid domains.
We present an interactive real-time demo to show the speed and generalization capabilities of our trained models.
arXiv Detail & Related papers (2020-06-15T20:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.