論文の概要: Temporal Attention Evolutional Graph Convolutional Network for Multivariate Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2505.00302v1
- Date: Thu, 01 May 2025 04:50:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.225119
- Title: Temporal Attention Evolutional Graph Convolutional Network for Multivariate Time Series Forecasting
- Title(参考訳): 多変量時系列予測のための時間注意進化グラフ畳み込みネットワーク
- Authors: Xinlong Zhao, Liying Zhang, Tianbo Zou, Yan Zhang,
- Abstract要約: 本稿ではTAEGCN(Temporal Attention Evolutional Graph Convolutional Network)を紹介する。
TAEGCNは、データ内の時間的因果関係と隠れた空間的依存関係を受信する。
METR-LAとPEMS-BAYの2つの公共交通ネットワークデータセットで行った実験結果から,提案モデルの有効性が示された。
- 参考スコア(独自算出の注目度): 2.6138578479379104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series forecasting enables the prediction of future states by leveraging historical data, thereby facilitating decision-making processes. Each data node in a multivariate time series encompasses a sequence of multiple dimensions. These nodes exhibit interdependent relationships, forming a graph structure. While existing prediction methods often assume a fixed graph structure, many real-world scenarios involve dynamic graph structures. Moreover, interactions among time series observed at different time scales vary significantly. To enhance prediction accuracy by capturing precise temporal and spatial features, this paper introduces the Temporal Attention Evolutional Graph Convolutional Network (TAEGCN). This novel method not only integrates causal temporal convolution and a multi-head self-attention mechanism to learn temporal features of nodes, but also construct the dynamic graph structure based on these temporal features to keep the consistency of the changing in spatial feature with temporal series. TAEGCN adeptly captures temporal causal relationships and hidden spatial dependencies within the data. Furthermore, TAEGCN incorporates a unified neural network that seamlessly integrates these components to generate final predictions. Experimental results conducted on two public transportation network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of the proposed model.
- Abstract(参考訳): 多変量時系列予測は、過去のデータを活用することで将来の状態を予測し、意思決定プロセスを容易にする。
多変量時系列の各データノードは、複数の次元のシーケンスを含む。
これらのノードは相互依存関係を示し、グラフ構造を形成する。
既存の予測手法は固定グラフ構造を仮定することが多いが、現実のシナリオの多くは動的グラフ構造を含む。
さらに、異なる時間スケールで観測される時系列間の相互作用は、大きく異なる。
本稿では,時間的・空間的特徴を正確に把握し,予測精度を向上させるために,時間的意図進化グラフ畳み込みネットワーク(TAEGCN)を提案する。
因果的時間的畳み込みと多頭部自己認識機構を統合してノードの時間的特徴を学習するだけでなく、これらの時間的特徴に基づいて動的グラフ構造を構築し、空間的特徴の変化と時間的連続との整合性を維持する。
TAEGCNは、データ内の時間的因果関係と隠れた空間的依存関係を受信する。
さらに、TAEGCNには、これらのコンポーネントをシームレスに統合して最終的な予測を生成する統合ニューラルネットワークが組み込まれている。
METR-LAとPEMS-BAYの2つの公共交通ネットワークデータセットで行った実験結果から,提案モデルの有効性が示された。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Learning Time-aware Graph Structures for Spatially Correlated Time
Series Forecasting [30.93275270960829]
本稿では時系列間の時間認識相関を抽出する時間認識グラフ構造学習(TagSL)を提案する。
グラフ畳み込みに基づくGated Recurrent Unit (GCGRU) も提案する。
最後に,TagSLとGCGRUを組み合わせたTGCRN(Time-aware Graph Convolutional Recurrent Network)という統合フレームワークを導入し,マルチステップ時間予測のためのエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-27T04:23:43Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting [20.03223916749058]
時系列予測は、科学と工学における重要な現実世界の応用の核心にある。
動的時間グラフ表現を学習するTimeGNNを提案する。
TimeGNNは、他の最先端のグラフベースの手法よりも4倍から80倍高速な推論時間を実現している。
論文 参考訳(メタデータ) (2023-07-27T08:10:19Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。