論文の概要: Learning to Learn with Quantum Optimization via Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2505.00561v1
- Date: Thu, 01 May 2025 14:39:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.332258
- Title: Learning to Learn with Quantum Optimization via Quantum Neural Networks
- Title(参考訳): 量子ニューラルネットワークによる量子最適化学習
- Authors: Kuan-Cheng Chen, Hiromichi Matsuyama, Wei-Hao Huang,
- Abstract要約: 量子ニューラルネットワーク,特にQuantum Long Short-Term Memory(QLSTM)を組み合わせた量子メタ学習フレームワークを導入する。
我々のアプローチは、より大きくより複雑な問題に急速に一般化し、収束に必要なイテレーションの数を大幅に減らします。
- 参考スコア(独自算出の注目度): 1.7819574476785418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Approximate Optimization Algorithms (QAOA) promise efficient solutions to classically intractable combinatorial optimization problems by harnessing shallow-depth quantum circuits. Yet, their performance and scalability often hinge on effective parameter optimization, which remains nontrivial due to rugged energy landscapes and hardware noise. In this work, we introduce a quantum meta-learning framework that combines quantum neural networks, specifically Quantum Long Short-Term Memory (QLSTM) architectures, with QAOA. By training the QLSTM optimizer on smaller graph instances, our approach rapidly generalizes to larger, more complex problems, substantially reducing the number of iterations required for convergence. Through comprehensive benchmarks on Max-Cut and Sherrington-Kirkpatrick model instances, we demonstrate that QLSTM-based optimizers converge faster and achieve higher approximation ratios compared to classical baselines, thereby offering a robust pathway toward scalable quantum optimization in the NISQ era.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、浅い深さの量子回路を利用することで、古典的に難解な組合せ最適化問題に対する効率的な解を約束する。
しかし、その性能とスケーラビリティは、しばしば効率的なパラメータ最適化に悩まされる。
本稿では,量子ニューラルネットワーク,特にQuantum Long Short-Term Memory(QLSTM)アーキテクチャとQAOAを組み合わせた量子メタラーニングフレームワークを提案する。
より小さなグラフインスタンス上でQLSTMオプティマイザをトレーニングすることにより、我々のアプローチはより大きく複雑な問題に急速に一般化し、収束に必要なイテレーションの数を大幅に削減する。
我々は、Max-Cut と Sherrington-Kirkpatrick モデルインスタンスの包括的なベンチマークを通じて、QLSTM ベースの最適化器が古典的ベースラインと比較して高速に収束し、高い近似比を達成し、NISQ 時代におけるスケーラブルな量子最適化への堅牢な経路を提供することを示した。
関連論文リスト
- A Comparative Study of Quantum Optimization Techniques for Solving Combinatorial Optimization Benchmark Problems [4.266376725904727]
本稿では,NP-hard問題に対する量子最適化手法の評価を目的とした,包括的なベンチマークフレームワークを提案する。
本フレームワークは,多次元クナップサック問題(MDKP),最大独立集合(MIS),二次割当問題(QAP),市場シェア問題(MSP)など,主要な課題に重点を置いている。
論文 参考訳(メタデータ) (2025-03-15T13:02:22Z) - Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
本研究は、4つの異なる最適化問題にまたがっていくつかの非フォールト耐性量子コンピューティングアルゴリズムを体系的にベンチマークする。
我々のベンチマークには、変分量子固有解法など、ノイズの多い中間スケール量子(NISQ)アルゴリズムが含まれている。
以上の結果から,FTQC以外のアルゴリズムは全ての問題に対して最適に動作しないことが明らかとなり,アルゴリズム戦略の調整の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-10-30T08:41:29Z) - Towards Optimizations of Quantum Circuit Simulation for Solving Max-Cut
Problems with QAOA [1.5047640669285467]
量子近似最適化アルゴリズム(QAOA)は、近似を用いて最適化問題を解くために用いられる一般的な量子アルゴリズムの1つである。
しかし、仮想量子コンピュータ上でのQAOAの実行は、最適化問題を解くのに遅いシミュレーション速度に悩まされている。
本稿では,QAOAの量子演算を数学的に最適化し,QCSを高速化する手法を提案する。
論文 参考訳(メタデータ) (2023-12-05T06:08:57Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Lyapunov control-inspired strategies for quantum combinatorial
optimization [0.0]
我々は、Lyapunov制御にインスパイアされた量子最適化戦略の拡張的な記述を提供する。
代わりに、これらの戦略は量子ビット測定からのフィードバックを利用して、決定論的に量子回路パラメータに値を割り当てる。
論文 参考訳(メタデータ) (2021-08-12T19:47:59Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。