GuideSR: Rethinking Guidance for One-Step High-Fidelity Diffusion-Based Super-Resolution
- URL: http://arxiv.org/abs/2505.00687v1
- Date: Thu, 01 May 2025 17:48:25 GMT
- Title: GuideSR: Rethinking Guidance for One-Step High-Fidelity Diffusion-Based Super-Resolution
- Authors: Aditya Arora, Zhengzhong Tu, Yufei Wang, Ruizheng Bai, Jian Wang, Sizhuo Ma,
- Abstract summary: GuideSR is a novel single-step diffusion-based image super-resolution (SR) model specifically designed to enhance image fidelity.<n>Our approach consistently outperforms existing methods across various reference-based metrics including PSNR, SSIM, LPIPS, DISTS and FID.
- Score: 15.563111624900865
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose GuideSR, a novel single-step diffusion-based image super-resolution (SR) model specifically designed to enhance image fidelity. Existing diffusion-based SR approaches typically adapt pre-trained generative models to image restoration tasks by adding extra conditioning on a VAE-downsampled representation of the degraded input, which often compromises structural fidelity. GuideSR addresses this limitation by introducing a dual-branch architecture comprising: (1) a Guidance Branch that preserves high-fidelity structures from the original-resolution degraded input, and (2) a Diffusion Branch, which a pre-trained latent diffusion model to enhance perceptual quality. Unlike conventional conditioning mechanisms, our Guidance Branch features a tailored structure for image restoration tasks, combining Full Resolution Blocks (FRBs) with channel attention and an Image Guidance Network (IGN) with guided attention. By embedding detailed structural information directly into the restoration pipeline, GuideSR produces sharper and more visually consistent results. Extensive experiments on benchmark datasets demonstrate that GuideSR achieves state-of-the-art performance while maintaining the low computational cost of single-step approaches, with up to 1.39dB PSNR gain on challenging real-world datasets. Our approach consistently outperforms existing methods across various reference-based metrics including PSNR, SSIM, LPIPS, DISTS and FID, further representing a practical advancement for real-world image restoration.
Related papers
- RAP-SR: RestorAtion Prior Enhancement in Diffusion Models for Realistic Image Super-Resolution [36.137383171027615]
We introduce RAP-SR, a restoration prior enhancement approach in pretrained diffusion models for Real-SR.<n>First, we develop the High-Fidelity Aesthetic Image dataset (HFAID), curated through a Quality-Driven Aesthetic Image Selection Pipeline (QDAISP)<n>Second, we propose the Restoration Priors Enhancement Framework, which includes Restoration Priors Refinement (RPR) and Restoration-Oriented Prompt Optimization (ROPO) modules.
arXiv Detail & Related papers (2024-12-10T03:17:38Z) - TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution [25.994093587158808]
Pre-trained text-to-image diffusion models are increasingly applied to real-world image super-resolution (Real-ISR) tasks.<n>Given the iterative refinement nature of diffusion models, most existing approaches are computationally expensive.<n>We propose TSD-SR, a novel distillation framework specifically designed for real-world image super-resolution.
arXiv Detail & Related papers (2024-11-27T12:01:08Z) - Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSR achieves superior objective metrics and visual quality compared to the state-of-the-art SR methods.
It reduces the inference time of diffusion-based SR methods to a level comparable to that of non-diffusion methods.
arXiv Detail & Related papers (2024-10-30T09:14:13Z) - One Model for Two Tasks: Cooperatively Recognizing and Recovering Low-Resolution Scene Text Images by Iterative Mutual Guidance [32.88048472109016]
Scene text recognition (STR) from high-resolution (HR) images has been significantly successful, however text reading on low-resolution (LR) images is still challenging.
Recently many scene text image super-resolution (STISR) models have been proposed to generate super-resolution (SR) images for the LR ones, then STR is done on the SR images, which thus boosts recognition performance.
In this paper, we propose a novel method called IMAGE to effectively recognize and recover LR scene text images simultaneously.
arXiv Detail & Related papers (2024-09-22T15:05:25Z) - Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
This work introduces a novel "Low-Res Leads the Way" (LWay) training framework to enhance the adaptability of SR models to real-world images.
Our approach utilizes a low-resolution (LR) reconstruction network to extract degradation embeddings from LR images, merging them with super-resolved outputs for LR reconstruction.
Our training regime is universally compatible, requiring no network architecture modifications, making it a practical solution for real-world SR applications.
arXiv Detail & Related papers (2024-03-05T02:29:18Z) - CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
We introduce the Cognitive Super-Resolution (CoSeR) framework, empowering SR models with the capacity to comprehend low-resolution images.
We achieve this by marrying image appearance and language understanding to generate a cognitive embedding.
To further improve image fidelity, we propose a novel condition injection scheme called "All-in-Attention"
arXiv Detail & Related papers (2023-11-27T16:33:29Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
Single image super-resolution (SISR) is a challenging problem that aims to up-sample a given low-resolution (LR) image to a high-resolution (HR) counterpart.
Recent approaches are trained on simulated LR images degraded by simplified down-sampling operators.
We propose a novel Invertible scale-Conditional Function (ICF) which can scale an input image and then restore the original input with different scale conditions.
arXiv Detail & Related papers (2023-07-24T12:42:45Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
We propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR.
In our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures.
Our method achieves the state-of-the-art against existing methods.
arXiv Detail & Related papers (2022-12-03T14:44:17Z) - RRSR:Reciprocal Reference-based Image Super-Resolution with Progressive
Feature Alignment and Selection [66.08293086254851]
We propose a reciprocal learning framework to reinforce the learning of a RefSR network.
The newly proposed module aligns reference-input images at multi-scale feature spaces and performs reference-aware feature selection.
We empirically show that multiple recent state-of-the-art RefSR models can be consistently improved with our reciprocal learning paradigm.
arXiv Detail & Related papers (2022-11-08T12:39:35Z) - Structure-Preserving Image Super-Resolution [94.16949589128296]
Structures matter in single image super-resolution (SISR)
Recent studies have promoted the development of SISR by recovering photo-realistic images.
However, there are still undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2021-09-26T08:48:27Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.