Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning
- URL: http://arxiv.org/abs/2403.02601v1
- Date: Tue, 5 Mar 2024 02:29:18 GMT
- Title: Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning
- Authors: Haoyu Chen, Wenbo Li, Jinjin Gu, Jingjing Ren, Haoze Sun, Xueyi Zou,
Zhensong Zhang, Youliang Yan, Lei Zhu
- Abstract summary: This work introduces a novel "Low-Res Leads the Way" (LWay) training framework to enhance the adaptability of SR models to real-world images.
Our approach utilizes a low-resolution (LR) reconstruction network to extract degradation embeddings from LR images, merging them with super-resolved outputs for LR reconstruction.
Our training regime is universally compatible, requiring no network architecture modifications, making it a practical solution for real-world SR applications.
- Score: 45.13580581290495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For image super-resolution (SR), bridging the gap between the performance on
synthetic datasets and real-world degradation scenarios remains a challenge.
This work introduces a novel "Low-Res Leads the Way" (LWay) training framework,
merging Supervised Pre-training with Self-supervised Learning to enhance the
adaptability of SR models to real-world images. Our approach utilizes a
low-resolution (LR) reconstruction network to extract degradation embeddings
from LR images, merging them with super-resolved outputs for LR reconstruction.
Leveraging unseen LR images for self-supervised learning guides the model to
adapt its modeling space to the target domain, facilitating fine-tuning of SR
models without requiring paired high-resolution (HR) images. The integration of
Discrete Wavelet Transform (DWT) further refines the focus on high-frequency
details. Extensive evaluations show that our method significantly improves the
generalization and detail restoration capabilities of SR models on unseen
real-world datasets, outperforming existing methods. Our training regime is
universally compatible, requiring no network architecture modifications, making
it a practical solution for real-world SR applications.
Related papers
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
arXiv Detail & Related papers (2024-10-07T18:18:54Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
We propose an image downscaling and SR model dubbed as SDFlow, which simultaneously learns a bidirectional many-to-many mapping between real-world LR and HR images unsupervisedly.
Experimental results on real-world image SR datasets indicate that SDFlow can generate diverse realistic LR and SR images both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-10-08T01:48:34Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
Single image super-resolution (SISR) is a challenging problem that aims to up-sample a given low-resolution (LR) image to a high-resolution (HR) counterpart.
Recent approaches are trained on simulated LR images degraded by simplified down-sampling operators.
We propose a novel Invertible scale-Conditional Function (ICF) which can scale an input image and then restore the original input with different scale conditions.
arXiv Detail & Related papers (2023-07-24T12:42:45Z) - RRSR:Reciprocal Reference-based Image Super-Resolution with Progressive
Feature Alignment and Selection [66.08293086254851]
We propose a reciprocal learning framework to reinforce the learning of a RefSR network.
The newly proposed module aligns reference-input images at multi-scale feature spaces and performs reference-aware feature selection.
We empirically show that multiple recent state-of-the-art RefSR models can be consistently improved with our reciprocal learning paradigm.
arXiv Detail & Related papers (2022-11-08T12:39:35Z) - Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models [3.9037347042028254]
Most single image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs.
We propose a novel supervised method to simulate an unknown degradation process with the inclusion of prior hardware knowledge.
Experiments on the real-world datasets validate that our degradation model can estimate LR images more accurately than the predetermined degradation operation.
arXiv Detail & Related papers (2021-10-20T19:53:48Z) - Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution [20.537597542144916]
We consider a deep cyclic network structure to maintain the domain consistency between the LR and HR data distributions.
We propose the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a generative adversarial network (GAN) framework for the LR to HR domain translation.
arXiv Detail & Related papers (2020-09-07T11:11:18Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.