Leveraging Depth Maps and Attention Mechanisms for Enhanced Image Inpainting
- URL: http://arxiv.org/abs/2505.00735v2
- Date: Thu, 08 May 2025 04:58:46 GMT
- Title: Leveraging Depth Maps and Attention Mechanisms for Enhanced Image Inpainting
- Authors: Jin Hyun Park, Harine Choi, Praewa Pitiphat,
- Abstract summary: We propose a novel approach that incorporates both RGB and depth images for enhanced image inpainting.<n>Our models employ a dual encoder architecture, where one encoder processes the RGB image and the other handles the depth image.<n>We show that incorporating depth information alongside the RGB image significantly improves the reconstruction quality.
- Score: 0.24578723416255752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing deep learning-based image inpainting methods typically rely on convolutional networks with RGB images to reconstruct images. However, relying exclusively on RGB images may neglect important depth information, which plays a critical role in understanding the spatial and structural context of a scene. Just as human vision leverages stereo cues to perceive depth, incorporating depth maps into the inpainting process can enhance the model's ability to reconstruct images with greater accuracy and contextual awareness. In this paper, we propose a novel approach that incorporates both RGB and depth images for enhanced image inpainting. Our models employ a dual encoder architecture, where one encoder processes the RGB image and the other handles the depth image. The encoded features from both encoders are then fused in the decoder using an attention mechanism, effectively integrating the RGB and depth representations. We use two different masking strategies, line and square, to test the robustness of the model under different types of occlusions. To further analyze the effectiveness of our approach, we use Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations to examine the regions of interest the model focuses on during inpainting. We show that incorporating depth information alongside the RGB image significantly improves the reconstruction quality. Through both qualitative and quantitative comparisons, we demonstrate that the depth-integrated model outperforms the baseline, with attention mechanisms further enhancing inpainting performance, as evidenced by multiple evaluation metrics and visualization.
Related papers
- RBF Weighted Hyper-Involution for RGB-D Object Detection [0.0]
We propose a real-time and two stream RGBD object detection model.
The proposed model consists of two new components: a depth guided hyper-involution that adapts dynamically based on the spatial interaction pattern in the raw depth map and an up-sampling based trainable fusion layer.
We show that the proposed model outperforms other RGB-D based object detection models on NYU Depth v2 dataset and achieves comparable (second best) results on SUN RGB-D.
arXiv Detail & Related papers (2023-09-30T11:25:34Z) - AGG-Net: Attention Guided Gated-convolutional Network for Depth Image
Completion [1.8820731605557168]
We propose a new model for depth image completion based on the Attention Guided Gated-convolutional Network (AGG-Net)
In the encoding stage, an Attention Guided Gated-Convolution (AG-GConv) module is proposed to realize the fusion of depth and color features at different scales.
In the decoding stage, an Attention Guided Skip Connection (AG-SC) module is presented to avoid introducing too many depth-irrelevant features to the reconstruction.
arXiv Detail & Related papers (2023-09-04T14:16:08Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRM is a novel recurrent network architecture for 6D pose refinement.
The architecture incorporates LSTM units to propagate information through each refinement step.
DeepRM achieves state-of-the-art performance on two widely accepted challenging datasets.
arXiv Detail & Related papers (2022-05-28T16:18:08Z) - Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal
Fusion with Depth Guidance [49.94504248096527]
We propose a Depth-Guided Outpainting Network (DGONet) to model the feature representations of different modalities.
Two components are designed to implement: 1) The Multimodal Learning Module produces unique depth and RGB feature representations from perspectives of different modal characteristics.
We specially design an additional constraint strategy consisting of Cross-modal Loss and Edge Loss to enhance ambiguous contours and expedite reliable content generation.
arXiv Detail & Related papers (2022-04-12T06:06:50Z) - Depth-SIMS: Semi-Parametric Image and Depth Synthesis [23.700034054124604]
We present a method that generates RGB canvases with well aligned segmentation maps and sparse depth maps, coupled with an in-painting network that transforms the RGB canvases into high quality RGB images.
We benchmark our method in terms of structural alignment and image quality, showing an increase in mIoU over SOTA by 3.7 percentage points and a highly competitive FID.
We analyse the quality of the generated data as training data for semantic segmentation and depth completion, and show that our approach is more suited for this purpose than other methods.
arXiv Detail & Related papers (2022-03-07T13:58:32Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Wavelength-based Attributed Deep Neural Network for Underwater Image
Restoration [9.378355457555319]
This paper shows that attributing the right receptive field size (context) based on the traversing range of the color channel may lead to a substantial performance gain.
As a second novelty, we have incorporated an attentive skip mechanism to adaptively refine the learned multi-contextual features.
The proposed framework, called Deep WaveNet, is optimized using the traditional pixel-wise and feature-based cost functions.
arXiv Detail & Related papers (2021-06-15T06:47:51Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Depth as Attention for Face Representation Learning [11.885178256393893]
A novel depth-guided attention mechanism is proposed for deep multi-modal face recognition using low-cost RGB-D sensors.
Our solution achieves average (increased) accuracies of 87.3% (+5.0%), 99.1% (+0.9%), 99.7% (+0.6%) and 95.3%(+0.5%) for the four datasets respectively.
arXiv Detail & Related papers (2021-01-03T16:19:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.