A Survey on 3D Reconstruction Techniques in Plant Phenotyping: From Classical Methods to Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS), and Beyond
- URL: http://arxiv.org/abs/2505.00737v1
- Date: Wed, 30 Apr 2025 02:04:23 GMT
- Title: A Survey on 3D Reconstruction Techniques in Plant Phenotyping: From Classical Methods to Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS), and Beyond
- Authors: Jiajia Li, Xinda Qi, Seyed Hamidreza Nabaei, Meiqi Liu, Dong Chen, Xin Zhang, Xunyuan Yin, Zhaojian Li,
- Abstract summary: Plant phenotyping plays a pivotal role in understanding plant traits and their interactions with the environment.<n>3D reconstruction technologies have emerged as powerful tools for capturing detailed plant morphology and structure.<n>This paper provides a review of the 3D reconstruction techniques for plant phenotyping.
- Score: 15.48852238904361
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Plant phenotyping plays a pivotal role in understanding plant traits and their interactions with the environment, making it crucial for advancing precision agriculture and crop improvement. 3D reconstruction technologies have emerged as powerful tools for capturing detailed plant morphology and structure, offering significant potential for accurate and automated phenotyping. This paper provides a comprehensive review of the 3D reconstruction techniques for plant phenotyping, covering classical reconstruction methods, emerging Neural Radiance Fields (NeRF), and the novel 3D Gaussian Splatting (3DGS) approach. Classical methods, which often rely on high-resolution sensors, are widely adopted due to their simplicity and flexibility in representing plant structures. However, they face challenges such as data density, noise, and scalability. NeRF, a recent advancement, enables high-quality, photorealistic 3D reconstructions from sparse viewpoints, but its computational cost and applicability in outdoor environments remain areas of active research. The emerging 3DGS technique introduces a new paradigm in reconstructing plant structures by representing geometry through Gaussian primitives, offering potential benefits in both efficiency and scalability. We review the methodologies, applications, and performance of these approaches in plant phenotyping and discuss their respective strengths, limitations, and future prospects (https://github.com/JiajiaLi04/3D-Reconstruction-Plants). Through this review, we aim to provide insights into how these diverse 3D reconstruction techniques can be effectively leveraged for automated and high-throughput plant phenotyping, contributing to the next generation of agricultural technology.
Related papers
- Advances in Feed-Forward 3D Reconstruction and View Synthesis: A Survey [154.50661618628433]
3D reconstruction and view synthesis are foundational problems in computer vision, graphics, and immersive technologies such as augmented reality (AR), virtual reality (VR), and digital twins.<n>Recent advances in feed-forward approaches, driven by deep learning, have revolutionized this field by enabling fast and generalizable 3D reconstruction and view synthesis.
arXiv Detail & Related papers (2025-07-19T06:13:25Z) - Review of Feed-forward 3D Reconstruction: From DUSt3R to VGGT [10.984522161856955]
3D reconstruction is a cornerstone technology for numerous applications, including augmented/virtual reality, autonomous driving, and robotics.<n>Deep learning has catalyzed a paradigm shift in 3D reconstruction.<n>New models employ a unified deep network to jointly infer camera poses and dense geometry directly from an Unconstrained set of images in a single forward pass.
arXiv Detail & Related papers (2025-07-11T09:41:54Z) - PlantDreamer: Achieving Realistic 3D Plant Models with Diffusion-Guided Gaussian Splatting [0.7937206070844555]
We introduce PlantDreamer, a novel approach to 3D synthetic plant generation.<n>It can achieve greater levels of realism for complex plant geometry and textures than available text-to-3D models.<n>We evaluate our approach by comparing its outputs with state-of-the-art text-to-3D models.
arXiv Detail & Related papers (2025-05-21T13:51:57Z) - CropCraft: Inverse Procedural Modeling for 3D Reconstruction of Crop Plants [16.558411700996746]
We present a novel method for 3D reconstruction of agricultural crops based on optimizing a model of plant morphology via inverse procedural modeling.
We validate our method on a dataset of real images of agricultural fields, and demonstrate that the reconstructions can be used for a variety of monitoring and simulation applications.
arXiv Detail & Related papers (2024-11-14T18:58:02Z) - DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures.
In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process.
In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain.
arXiv Detail & Related papers (2024-11-03T15:15:01Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.<n>Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - Evaluating Modern Approaches in 3D Scene Reconstruction: NeRF vs Gaussian-Based Methods [4.6836510920448715]
This study explores the capabilities of Neural Radiance Fields (NeRF) and Gaussian-based methods in the context of 3D scene reconstruction.
We assess performance based on tracking accuracy, mapping fidelity, and view synthesis.
Findings reveal that NeRF excels in view synthesis, offering unique capabilities in generating new perspectives from existing data.
arXiv Detail & Related papers (2024-08-08T07:11:57Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - A Survey on 3D Gaussian Splatting [51.96747208581275]
3D Gaussian splatting (GS) has emerged as a transformative technique in explicit radiance field and computer graphics.<n>We provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS.<n>By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond.
arXiv Detail & Related papers (2024-01-08T13:42:59Z) - UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation [101.2317840114147]
We present UniDream, a text-to-3D generation framework by incorporating unified diffusion priors.
Our approach consists of three main components: (1) a dual-phase training process to get albedo-normal aligned multi-view diffusion and reconstruction models, (2) a progressive generation procedure for geometry and albedo-textures based on Score Distillation Sample (SDS) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model.
arXiv Detail & Related papers (2023-12-14T09:07:37Z) - High-fidelity 3D Reconstruction of Plants using Neural Radiance Field [10.245620447865456]
We present a novel plant dataset comprising real plant images from production environments.
This dataset is a first-of-its-kind initiative aimed at comprehensively exploring the advantages and limitations of NeRF in agricultural contexts.
arXiv Detail & Related papers (2023-11-07T17:31:27Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - 3D shape sensing and deep learning-based segmentation of strawberries [5.634825161148484]
We evaluate modern sensing technologies including stereo and time-of-flight cameras for 3D perception of shape in agriculture.
We propose a novel 3D deep neural network which exploits the organised nature of information originating from the camera-based 3D sensors.
arXiv Detail & Related papers (2021-11-26T18:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.