Review of Feed-forward 3D Reconstruction: From DUSt3R to VGGT
- URL: http://arxiv.org/abs/2507.08448v1
- Date: Fri, 11 Jul 2025 09:41:54 GMT
- Title: Review of Feed-forward 3D Reconstruction: From DUSt3R to VGGT
- Authors: Wei Zhang, Yihang Wu, Songhua Li, Wenjie Ma, Xin Ma, Qiang Li, Qi Wang,
- Abstract summary: 3D reconstruction is a cornerstone technology for numerous applications, including augmented/virtual reality, autonomous driving, and robotics.<n>Deep learning has catalyzed a paradigm shift in 3D reconstruction.<n>New models employ a unified deep network to jointly infer camera poses and dense geometry directly from an Unconstrained set of images in a single forward pass.
- Score: 10.984522161856955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D reconstruction, which aims to recover the dense three-dimensional structure of a scene, is a cornerstone technology for numerous applications, including augmented/virtual reality, autonomous driving, and robotics. While traditional pipelines like Structure from Motion (SfM) and Multi-View Stereo (MVS) achieve high precision through iterative optimization, they are limited by complex workflows, high computational cost, and poor robustness in challenging scenarios like texture-less regions. Recently, deep learning has catalyzed a paradigm shift in 3D reconstruction. A new family of models, exemplified by DUSt3R, has pioneered a feed-forward approach. These models employ a unified deep network to jointly infer camera poses and dense geometry directly from an Unconstrained set of images in a single forward pass. This survey provides a systematic review of this emerging domain. We begin by dissecting the technical framework of these feed-forward models, including their Transformer-based correspondence modeling, joint pose and geometry regression mechanisms, and strategies for scaling from two-view to multi-view scenarios. To highlight the disruptive nature of this new paradigm, we contrast it with both traditional pipelines and earlier learning-based methods like MVSNet. Furthermore, we provide an overview of relevant datasets and evaluation metrics. Finally, we discuss the technology's broad application prospects and identify key future challenges and opportunities, such as model accuracy and scalability, and handling dynamic scenes.
Related papers
- Sparse-View 3D Reconstruction: Recent Advances and Open Challenges [0.8583178253811411]
Sparse-view 3D reconstruction is essential for applications in which dense image acquisition is impractical.<n>This survey reviews the latest advances in neural implicit models and explicit point-cloud-based approaches.<n>We analyze how geometric regularization, explicit shape modeling, and generative inference are used to mitigate artifacts.
arXiv Detail & Related papers (2025-07-22T09:57:28Z) - Advances in Feed-Forward 3D Reconstruction and View Synthesis: A Survey [154.50661618628433]
3D reconstruction and view synthesis are foundational problems in computer vision, graphics, and immersive technologies such as augmented reality (AR), virtual reality (VR), and digital twins.<n>Recent advances in feed-forward approaches, driven by deep learning, have revolutionized this field by enabling fast and generalizable 3D reconstruction and view synthesis.
arXiv Detail & Related papers (2025-07-19T06:13:25Z) - Towards Depth Foundation Model: Recent Trends in Vision-Based Depth Estimation [75.30238170051291]
Depth estimation is a fundamental task in 3D computer vision, crucial for applications such as 3D reconstruction, free-viewpoint rendering, robotics, autonomous driving, and AR/VR technologies.<n>Traditional methods relying on hardware sensors like LiDAR are often limited by high costs, low resolution, and environmental sensitivity, limiting their applicability in real-world scenarios.<n>Recent advances in vision-based methods offer a promising alternative, yet they face challenges in generalization and stability due to either the low-capacity model architectures or the reliance on domain-specific and small-scale datasets.
arXiv Detail & Related papers (2025-07-15T17:59:59Z) - DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos [52.46386528202226]
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM)<n>It is the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene.<n>It achieves performance on par with state-of-the-art monocular video 3D tracking methods.
arXiv Detail & Related papers (2025-06-11T17:59:58Z) - Spatial Understanding from Videos: Structured Prompts Meet Simulation Data [79.52833996220059]
We present a unified framework for enhancing 3D spatial reasoning in pre-trained vision-language models without modifying their architecture.<n>This framework combines SpatialMind, a structured prompting strategy that decomposes complex scenes and questions into interpretable reasoning steps, with ScanForgeQA, a scalable question-answering dataset built from diverse 3D simulation scenes.
arXiv Detail & Related papers (2025-06-04T07:36:33Z) - A Generative Approach to High Fidelity 3D Reconstruction from Text Data [0.0]
This research proposes a fully automated pipeline that seamlessly integrates text-to-image generation, various image processing techniques, and deep learning methods for reflection removal and 3D reconstruction.<n>By leveraging state-of-the-art generative models like Stable Diffusion, the methodology translates natural language inputs into detailed 3D models through a multi-stage workflow.<n>This approach addresses key challenges in generative reconstruction, such as maintaining semantic coherence, managing geometric complexity, and preserving detailed visual information.
arXiv Detail & Related papers (2025-03-05T16:54:15Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.<n>By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.<n>We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - End-to-End Multi-View Structure-from-Motion with Hypercorrelation
Volumes [7.99536002595393]
Deep learning techniques have been proposed to tackle this problem.
We improve on the state-of-the-art two-view structure-from-motion(SfM) approach.
We extend it to the general multi-view case and evaluate it on the complex benchmark dataset DTU.
arXiv Detail & Related papers (2022-09-14T20:58:44Z) - Reconstructing Interactive 3D Scenes by Panoptic Mapping and CAD Model
Alignments [81.38641691636847]
We rethink the problem of scene reconstruction from an embodied agent's perspective.
We reconstruct an interactive scene using RGB-D data stream.
This reconstructed scene replaces the object meshes in the dense panoptic map with part-based articulated CAD models.
arXiv Detail & Related papers (2021-03-30T05:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.