Multi-Modal Language Models as Text-to-Image Model Evaluators
- URL: http://arxiv.org/abs/2505.00759v2
- Date: Mon, 12 May 2025 20:46:35 GMT
- Title: Multi-Modal Language Models as Text-to-Image Model Evaluators
- Authors: Jiahui Chen, Candace Ross, Reyhane Askari-Hemmat, Koustuv Sinha, Melissa Hall, Michal Drozdzal, Adriana Romero-Soriano,
- Abstract summary: Multimodal Text-to-Image Eval (MT2IE) is an evaluation framework that iteratively generates prompts for evaluation.<n>We show that MT2IE's prompt-generation consistency scores have higher correlation with human judgment than scores previously introduced in the literature.
- Score: 16.675735328424786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The steady improvements of text-to-image (T2I) generative models lead to slow deprecation of automatic evaluation benchmarks that rely on static datasets, motivating researchers to seek alternative ways to evaluate the T2I progress. In this paper, we explore the potential of multi-modal large language models (MLLMs) as evaluator agents that interact with a T2I model, with the objective of assessing prompt-generation consistency and image aesthetics. We present Multimodal Text-to-Image Eval (MT2IE), an evaluation framework that iteratively generates prompts for evaluation, scores generated images and matches T2I evaluation of existing benchmarks with a fraction of the prompts used in existing static benchmarks. Moreover, we show that MT2IE's prompt-generation consistency scores have higher correlation with human judgment than scores previously introduced in the literature. MT2IE generates prompts that are efficient at probing T2I model performance, producing the same relative T2I model rankings as existing benchmarks while using only 1/80th the number of prompts for evaluation.
Related papers
- OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation [23.05106664412349]
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts.<n>OneIG-Bench is a benchmark framework for evaluation of T2I models across multiple dimensions.
arXiv Detail & Related papers (2025-06-09T17:50:21Z) - Minos: A Multimodal Evaluation Model for Bidirectional Generation Between Image and Text [51.149562188883486]
We introduce Minos-Corpus, a large-scale multimodal evaluation dataset that combines evaluation data from both human and GPT.<n>Based on this corpus, we propose Data Selection and Balance, Mix-SFT training methods, and apply DPO to develop Minos.
arXiv Detail & Related papers (2025-06-03T06:17:16Z) - TIIF-Bench: How Does Your T2I Model Follow Your Instructions? [7.13169573900556]
We present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions.<n> TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities.<n>Two critical attributes, i.e. text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models.
arXiv Detail & Related papers (2025-06-02T18:44:07Z) - OVERT: A Benchmark for Over-Refusal Evaluation on Text-to-Image Models [73.6716695218951]
Over-refusal is a phenomenon known as $textitover-refusal$ that reduces the practical utility of T2I models.<n>We present OVERT ($textbfOVE$r-$textbfR$efusal evaluation on $textbfT$ext-to-image models), the first large-scale benchmark for assessing over-refusal behaviors.
arXiv Detail & Related papers (2025-05-27T15:42:46Z) - T2I-Eval-R1: Reinforcement Learning-Driven Reasoning for Interpretable Text-to-Image Evaluation [60.620408007636016]
We propose T2I-Eval-R1, a novel reinforcement learning framework that trains open-source MLLMs using only coarse-grained quality scores.<n>Our approach integrates Group Relative Policy Optimization into the instruction-tuning process, enabling models to generate both scalar scores and interpretable reasoning chains.
arXiv Detail & Related papers (2025-05-23T13:44:59Z) - EvalMuse-40K: A Reliable and Fine-Grained Benchmark with Comprehensive Human Annotations for Text-to-Image Generation Model Evaluation [29.176750442205325]
In this study, we contribute an EvalMuse-40K benchmark, gathering 40K image-text pairs with fine-grained human annotations for image-text alignment-related tasks.<n>We introduce two new methods to evaluate the image-text alignment capabilities of T2I models.
arXiv Detail & Related papers (2024-12-24T04:08:25Z) - Image Regeneration: Evaluating Text-to-Image Model via Generating Identical Image with Multimodal Large Language Models [54.052963634384945]
We introduce the Image Regeneration task to assess text-to-image models.
We use GPT4V to bridge the gap between the reference image and the text input for the T2I model.
We also present ImageRepainter framework to enhance the quality of generated images.
arXiv Detail & Related papers (2024-11-14T13:52:43Z) - VLEU: a Method for Automatic Evaluation for Generalizability of Text-to-Image Models [18.259733507395634]
We introduce a new metric called Visual Language Evaluation Understudy (VLEU)
VLEU quantifies a model's generalizability by computing the Kullback-Leibler divergence between the marginal distribution of the visual text and the conditional distribution of the images generated by the model.
Our experiments demonstrate the effectiveness of VLEU in evaluating the generalization capability of various T2I models.
arXiv Detail & Related papers (2024-09-23T04:50:36Z) - Who Evaluates the Evaluations? Objectively Scoring Text-to-Image Prompt Coherence Metrics with T2IScoreScore (TS2) [62.44395685571094]
We introduce T2IScoreScore, a curated set of semantic error graphs containing a prompt and a set of increasingly erroneous images.
These allow us to rigorously judge whether a given prompt faithfulness metric can correctly order images with respect to their objective error count.
We find that the state-of-the-art VLM-based metrics fail to significantly outperform simple (and supposedly worse) feature-based metrics like CLIPScore.
arXiv Detail & Related papers (2024-04-05T17:57:16Z) - A Contrastive Compositional Benchmark for Text-to-Image Synthesis: A
Study with Unified Text-to-Image Fidelity Metrics [58.83242220266935]
We introduce Winoground-T2I, a benchmark designed to evaluate the compositionality of T2I models.
This benchmark includes 11K complex, high-quality contrastive sentence pairs spanning 20 categories.
We use Winoground-T2I with a dual objective: to evaluate the performance of T2I models and the metrics used for their evaluation.
arXiv Detail & Related papers (2023-12-04T20:47:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.