TIIF-Bench: How Does Your T2I Model Follow Your Instructions?
- URL: http://arxiv.org/abs/2506.02161v2
- Date: Wed, 25 Jun 2025 06:18:10 GMT
- Title: TIIF-Bench: How Does Your T2I Model Follow Your Instructions?
- Authors: Xinyu Wei, Jinrui Zhang, Zeqing Wang, Hongyang Wei, Zhen Guo, Lei Zhang,
- Abstract summary: We present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions.<n> TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities.<n>Two critical attributes, i.e. text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models.
- Score: 7.13169573900556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancements of Text-to-Image (T2I) models have ushered in a new phase of AI-generated content, marked by their growing ability to interpret and follow user instructions. However, existing T2I model evaluation benchmarks fall short in limited prompt diversity and complexity, as well as coarse evaluation metrics, making it difficult to evaluate the fine-grained alignment performance between textual instructions and generated images. In this paper, we present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions. TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities. To rigorously evaluate model robustness to varying prompt lengths, we provide a short and a long version for each prompt with identical core semantics. Two critical attributes, i.e., text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models. In addition, we collect 100 high-quality designer level prompts that encompass various scenarios to comprehensively assess model performance. Leveraging the world knowledge encoded in large vision language models, we propose a novel computable framework to discern subtle variations in T2I model outputs. Through meticulous benchmarking of mainstream T2I models on TIIF-Bench, we analyze the pros and cons of current T2I models and reveal the limitations of current T2I benchmarks. Project Page: https://a113n-w3i.github.io/TIIF_Bench/.
Related papers
- OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation [23.05106664412349]
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts.<n>OneIG-Bench is a benchmark framework for evaluation of T2I models across multiple dimensions.
arXiv Detail & Related papers (2025-06-09T17:50:21Z) - Draw ALL Your Imagine: A Holistic Benchmark and Agent Framework for Complex Instruction-based Image Generation [9.978181430065987]
LongBench-T2I is a benchmark for evaluating text-to-image (T2I) models under complex instructions.<n>LongBench-T2I consists of 500 intricately designed prompts spanning nine diverse visual evaluation dimensions.<n>Plan2Gen is a framework that facilitates complex instruction-driven image generation without requiring additional model training.
arXiv Detail & Related papers (2025-05-30T16:48:14Z) - Multi-Modal Language Models as Text-to-Image Model Evaluators [16.675735328424786]
Multimodal Text-to-Image Eval (MT2IE) is an evaluation framework that iteratively generates prompts for evaluation.<n>We show that MT2IE's prompt-generation consistency scores have higher correlation with human judgment than scores previously introduced in the literature.
arXiv Detail & Related papers (2025-05-01T17:47:55Z) - PhyBench: A Physical Commonsense Benchmark for Evaluating Text-to-Image Models [50.33699462106502]
Text-to-image (T2I) models frequently fail to produce images consistent with physical commonsense.
Current T2I evaluation benchmarks focus on metrics such as accuracy, bias, and safety, neglecting the evaluation of models' internal knowledge.
We introduce PhyBench, a comprehensive T2I evaluation dataset comprising 700 prompts across 4 primary categories: mechanics, optics, thermodynamics, and material properties.
arXiv Detail & Related papers (2024-06-17T17:49:01Z) - Who Evaluates the Evaluations? Objectively Scoring Text-to-Image Prompt Coherence Metrics with T2IScoreScore (TS2) [62.44395685571094]
We introduce T2IScoreScore, a curated set of semantic error graphs containing a prompt and a set of increasingly erroneous images.
These allow us to rigorously judge whether a given prompt faithfulness metric can correctly order images with respect to their objective error count.
We find that the state-of-the-art VLM-based metrics fail to significantly outperform simple (and supposedly worse) feature-based metrics like CLIPScore.
arXiv Detail & Related papers (2024-04-05T17:57:16Z) - SELMA: Learning and Merging Skill-Specific Text-to-Image Experts with
Auto-Generated Data [73.23388142296535]
SELMA improves the faithfulness of T2I models by fine-tuning models on automatically generated, multi-skill image-text datasets.
We show that SELMA significantly improves the semantic alignment and text faithfulness of state-of-the-art T2I diffusion models on multiple benchmarks.
We also show that fine-tuning with image-text pairs auto-collected via SELMA shows comparable performance to fine-tuning with ground truth data.
arXiv Detail & Related papers (2024-03-11T17:35:33Z) - A Contrastive Compositional Benchmark for Text-to-Image Synthesis: A
Study with Unified Text-to-Image Fidelity Metrics [58.83242220266935]
We introduce Winoground-T2I, a benchmark designed to evaluate the compositionality of T2I models.
This benchmark includes 11K complex, high-quality contrastive sentence pairs spanning 20 categories.
We use Winoground-T2I with a dual objective: to evaluate the performance of T2I models and the metrics used for their evaluation.
arXiv Detail & Related papers (2023-12-04T20:47:48Z) - T2I-CompBench++: An Enhanced and Comprehensive Benchmark for Compositional Text-to-image Generation [55.16845189272573]
T2I-CompBench++ is an enhanced benchmark for compositional text-to-image generation.<n>It comprises 8,000 compositional text prompts categorized into four primary groups: attribute binding, object relationships, generative numeracy, and complex compositions.
arXiv Detail & Related papers (2023-07-12T17:59:42Z) - Visual Programming for Text-to-Image Generation and Evaluation [73.12069620086311]
We propose two novel interpretable/explainable visual programming frameworks for text-to-image (T2I) generation and evaluation.
First, we introduce VPGen, an interpretable step-by-step T2I generation framework that decomposes T2I generation into three steps: object/count generation, layout generation, and image generation.
Second, we introduce VPEval, an interpretable and explainable evaluation framework for T2I generation based on visual programming.
arXiv Detail & Related papers (2023-05-24T16:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.