Towards Explainable Temporal User Profiling with LLMs
- URL: http://arxiv.org/abs/2505.00886v1
- Date: Thu, 01 May 2025 22:02:46 GMT
- Title: Towards Explainable Temporal User Profiling with LLMs
- Authors: Milad Sabouri, Masoud Mansoury, Kun Lin, Bamshad Mobasher,
- Abstract summary: We leverage large language models (LLMs) to generate natural language summaries of users' interaction histories.<n>Our framework not only models temporal user preferences but also produces natural language profiles that can be used to explain recommendations in an interpretable manner.
- Score: 3.719862246745416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately modeling user preferences is vital not only for improving recommendation performance but also for enhancing transparency in recommender systems. Conventional user profiling methods, such as averaging item embeddings, often overlook the evolving, nuanced nature of user interests, particularly the interplay between short-term and long-term preferences. In this work, we leverage large language models (LLMs) to generate natural language summaries of users' interaction histories, distinguishing recent behaviors from more persistent tendencies. Our framework not only models temporal user preferences but also produces natural language profiles that can be used to explain recommendations in an interpretable manner. These textual profiles are encoded via a pre-trained model, and an attention mechanism dynamically fuses the short-term and long-term embeddings into a comprehensive user representation. Beyond boosting recommendation accuracy over multiple baselines, our approach naturally supports explainability: the interpretable text summaries and attention weights can be exposed to end users, offering insights into why specific items are suggested. Experiments on real-world datasets underscore both the performance gains and the promise of generating clearer, more transparent justifications for content-based recommendations.
Related papers
- Multi-agents based User Values Mining for Recommendation [52.26100802380767]
We propose a zero-shot multi-LLM collaborative framework for effective and accurate user value extraction.<n>We apply text summarization techniques to condense item content while preserving essential meaning.<n>To mitigate hallucinations, we introduce two specialized agent roles: evaluators and supervisors.
arXiv Detail & Related papers (2025-05-02T04:01:31Z) - Unveiling User Preferences: A Knowledge Graph and LLM-Driven Approach for Conversational Recommendation [55.5687800992432]
We propose a plug-and-play framework that synergizes Large Language Models (LLMs) and Knowledge Graphs (KGs) to unveil user preferences.<n>This enables the LLM to transform KG entities into concise natural language descriptions, allowing them to comprehend domain-specific knowledge.
arXiv Detail & Related papers (2024-11-16T11:47:21Z) - ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation [38.64175351885443]
Large language models have been flourishing in the natural language processing (NLP) domain.
Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns.
Existing works only fine-tune a sole LLM on given text data without introducing that important information to it.
arXiv Detail & Related papers (2024-06-27T01:37:57Z) - InteraRec: Screenshot Based Recommendations Using Multimodal Large Language Models [0.6926105253992517]
We introduce a sophisticated and interactive recommendation framework denoted as InteraRec.
InteraRec captures high-frequency screenshots of web pages as users navigate through a website.
We demonstrate the effectiveness of InteraRec in providing users with valuable and personalized offerings.
arXiv Detail & Related papers (2024-02-26T17:47:57Z) - SPAR: Personalized Content-Based Recommendation via Long Engagement Attention [43.04717491985609]
Leveraging users' long engagement histories is essential for personalized content recommendations.
We introduce a content-based recommendation framework, SPAR, which effectively tackles the challenges of holistic user interest extraction.
Our framework outperforms existing state-of-the-art (SoTA) methods.
arXiv Detail & Related papers (2024-02-16T10:36:38Z) - User Embedding Model for Personalized Language Prompting [9.472634942498859]
We introduce a new User Embedding Module (UEM) that efficiently processes user history in free-form text by compressing and representing them as embeddings.
Our experiments demonstrate the superior capability of this approach in handling significantly longer histories.
The main contribution of this research is to demonstrate the ability to bias language models with user signals represented as embeddings.
arXiv Detail & Related papers (2024-01-10T00:35:52Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
Large language models (LLMs) have demonstrated remarkable intelligence in understanding, reasoning, and instruction following.
This paper presents the initial exploration of using LLMs as surrogate models to explain black-box recommender models.
To facilitate an effective alignment, we introduce three methods: behavior alignment, intention alignment, and hybrid alignment.
arXiv Detail & Related papers (2023-11-18T03:05:43Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Denoising User-aware Memory Network for Recommendation [11.145186013006375]
We propose a novel CTR model named denoising user-aware memory network (DUMN)
DUMN uses the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback.
Experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2021-07-12T14:39:36Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.