Enhancing User Sequence Modeling through Barlow Twins-based Self-Supervised Learning
- URL: http://arxiv.org/abs/2505.00953v1
- Date: Fri, 02 May 2025 02:04:52 GMT
- Title: Enhancing User Sequence Modeling through Barlow Twins-based Self-Supervised Learning
- Authors: Yuhan Liu, Lin Ning, Neo Wu, Karan Singhal, Philip Andrew Mansfield, Devora Berlowitz, Sushant Prakash, Bradley Green,
- Abstract summary: We propose an adaptation of Barlow Twins, a state-of-the-art SSL methods, to user sequence modeling by incorporating suitable augmentation methods.<n>Our approach aims to mitigate the need for large negative sample batches, enabling effective representation learning with smaller batch sizes and limited labeled data.
- Score: 17.299357794051797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User sequence modeling is crucial for modern large-scale recommendation systems, as it enables the extraction of informative representations of users and items from their historical interactions. These user representations are widely used for a variety of downstream tasks to enhance users' online experience. A key challenge for learning these representations is the lack of labeled training data. While self-supervised learning (SSL) methods have emerged as a promising solution for learning representations from unlabeled data, many existing approaches rely on extensive negative sampling, which can be computationally expensive and may not always be feasible in real-world scenario. In this work, we propose an adaptation of Barlow Twins, a state-of-the-art SSL methods, to user sequence modeling by incorporating suitable augmentation methods. Our approach aims to mitigate the need for large negative sample batches, enabling effective representation learning with smaller batch sizes and limited labeled data. We evaluate our method on the MovieLens-1M, MovieLens-20M, and Yelp datasets, demonstrating that our method consistently outperforms the widely-used dual encoder model across three downstream tasks, achieving an 8%-20% improvement in accuracy. Our findings underscore the effectiveness of our approach in extracting valuable sequence-level information for user modeling, particularly in scenarios where labeled data is scarce and negative examples are limited.
Related papers
- Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.<n>LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.<n>Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Generalized User Representations for Transfer Learning [6.953653891411339]
We present a novel framework for user representation in large-scale recommender systems.
Our approach employs a two-stage methodology combining representation learning and transfer learning.
We show how the proposed framework can significantly reduce infrastructure costs compared to alternative approaches.
arXiv Detail & Related papers (2024-03-01T15:05:21Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain,
Active and Continual Few-Shot Learning [41.07029317930986]
We propose a variance-sensitive class of models that operates in a low-label regime.
The first method, Simple CNAPS, employs a hierarchically regularized Mahalanobis-distance based classifier.
We further extend this approach to a transductive learning setting, proposing Transductive CNAPS.
arXiv Detail & Related papers (2022-01-13T18:59:02Z) - Self-Supervised Contrastive Learning for Efficient User Satisfaction
Prediction in Conversational Agents [35.2098736872247]
We propose a self-supervised contrastive learning approach to learn user-agent interactions.
We show that the pre-trained models using the self-supervised objective are transferable to the user satisfaction prediction.
We also propose a novel few-shot transfer learning approach that ensures better transferability for very small sample sizes.
arXiv Detail & Related papers (2020-10-21T18:10:58Z) - Pseudo-Representation Labeling Semi-Supervised Learning [0.0]
In recent years, semi-supervised learning has shown tremendous success in leveraging unlabeled data to improve the performance of deep learning models.
This work proposes the pseudo-representation labeling, a simple and flexible framework that utilizes pseudo-labeling techniques to iteratively label a small amount of unlabeled data and use them as training data.
Compared with the existing approaches, the pseudo-representation labeling is more intuitive and can effectively solve practical problems in the real world.
arXiv Detail & Related papers (2020-05-31T03:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.