Self-Supervised Contrastive Learning for Efficient User Satisfaction
Prediction in Conversational Agents
- URL: http://arxiv.org/abs/2010.11230v2
- Date: Sun, 11 Apr 2021 16:44:39 GMT
- Title: Self-Supervised Contrastive Learning for Efficient User Satisfaction
Prediction in Conversational Agents
- Authors: Mohammad Kachuee, Hao Yuan, Young-Bum Kim, Sungjin Lee
- Abstract summary: We propose a self-supervised contrastive learning approach to learn user-agent interactions.
We show that the pre-trained models using the self-supervised objective are transferable to the user satisfaction prediction.
We also propose a novel few-shot transfer learning approach that ensures better transferability for very small sample sizes.
- Score: 35.2098736872247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Turn-level user satisfaction is one of the most important performance metrics
for conversational agents. It can be used to monitor the agent's performance
and provide insights about defective user experiences. Moreover, a powerful
satisfaction model can be used as an objective function that a conversational
agent continuously optimizes for. While end-to-end deep learning has shown
promising results, having access to a large number of reliable annotated
samples required by these methods remains challenging. In a large-scale
conversational system, there is a growing number of newly developed skills,
making the traditional data collection, annotation, and modeling process
impractical due to the required annotation costs as well as the turnaround
times. In this paper, we suggest a self-supervised contrastive learning
approach that leverages the pool of unlabeled data to learn user-agent
interactions. We show that the pre-trained models using the self-supervised
objective are transferable to the user satisfaction prediction. In addition, we
propose a novel few-shot transfer learning approach that ensures better
transferability for very small sample sizes. The suggested few-shot method does
not require any inner loop optimization process and is scalable to very large
datasets and complex models. Based on our experiments using real-world data
from a large-scale commercial system, the suggested approach is able to
significantly reduce the required number of annotations, while improving the
generalization on unseen out-of-domain skills.
Related papers
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement [79.2400720115588]
We introduce Persona-DB, a simple yet effective framework consisting of a hierarchical construction process to improve generalization across task contexts.
In the evaluation of response prediction, Persona-DB demonstrates superior context efficiency in maintaining accuracy with a significantly reduced retrieval size.
Our experiments also indicate a marked improvement of over 10% under cold-start scenarios, when users have extremely sparse data.
arXiv Detail & Related papers (2024-02-16T20:20:43Z) - Federated Pruning: Improving Neural Network Efficiency with Federated
Learning [24.36174705715827]
We propose Federated Pruning to train a reduced model under the federated setting.
We explore different pruning schemes and provide empirical evidence of the effectiveness of our methods.
arXiv Detail & Related papers (2022-09-14T00:48:37Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
We propose a deep reinforcement learning approach that transforms the optimization procedure into an end-to-end learnable process.
Our experiments on real-world data show that our method is model-agnostic, relying only on feedback from model predictions.
arXiv Detail & Related papers (2021-06-04T16:54:36Z) - Interactive Weak Supervision: Learning Useful Heuristics for Data
Labeling [19.24454872492008]
Weak supervision offers a promising alternative for producing labeled datasets without ground truth labels.
We develop the first framework for interactive weak supervision in which a method proposes iterations and learns from user feedback.
Our experiments demonstrate that only a small number of feedback are needed to train models that achieve highly competitive test set performance.
arXiv Detail & Related papers (2020-12-11T00:10:38Z) - Large-scale Hybrid Approach for Predicting User Satisfaction with
Conversational Agents [28.668681892786264]
Measuring user satisfaction level is a challenging task, and a critical component in developing large-scale conversational agent systems.
Human annotation based approaches are easier to control, but hard to scale.
A novel alternative approach is to collect user's direct feedback via a feedback elicitation system embedded to the conversational agent system.
arXiv Detail & Related papers (2020-05-29T16:29:09Z) - Learning from Imperfect Annotations [15.306536555936692]
Many machine learning systems today are trained on large amounts of human-annotated data.
We propose a new end-to-end framework that enables us to merge the aggregation step with model training.
We show accuracy gains of up to 25% over the current state-of-the-art approaches for aggregating annotations.
arXiv Detail & Related papers (2020-04-07T15:21:08Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.