Seeking to Collide: Online Safety-Critical Scenario Generation for Autonomous Driving with Retrieval Augmented Large Language Models
- URL: http://arxiv.org/abs/2505.00972v2
- Date: Tue, 15 Jul 2025 07:52:46 GMT
- Title: Seeking to Collide: Online Safety-Critical Scenario Generation for Autonomous Driving with Retrieval Augmented Large Language Models
- Authors: Yuewen Mei, Tong Nie, Jian Sun, Ye Tian,
- Abstract summary: We introduce an online, retrieval-augmented large language model (LLM) framework for generating safety-critical driving scenarios.<n>Our model reduces the mean minimum time-to-collision from 1.62 to 1.08 s and incurs a 75% collision rate, substantially outperforming baselines.
- Score: 39.139025989575686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation-based testing is crucial for validating autonomous vehicles (AVs), yet existing scenario generation methods either overfit to common driving patterns or operate in an offline, non-interactive manner that fails to expose rare, safety-critical corner cases. In this paper, we introduce an online, retrieval-augmented large language model (LLM) framework for generating safety-critical driving scenarios. Our method first employs an LLM-based behavior analyzer to infer the most dangerous intent of the background vehicle from the observed state, then queries additional LLM agents to synthesize feasible adversarial trajectories. To mitigate catastrophic forgetting and accelerate adaptation, we augment the framework with a dynamic memorization and retrieval bank of intent-planner pairs, automatically expanding its behavioral library when novel intents arise. Evaluations using the Waymo Open Motion Dataset demonstrate that our model reduces the mean minimum time-to-collision from 1.62 to 1.08 s and incurs a 75% collision rate, substantially outperforming baselines.
Related papers
- SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
We propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge.<n>To explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic.<n>Our Multimodal Retrieval-Augmented Generation model leverages video, control signals, and environmental attributes to learn from past driving experiences.
arXiv Detail & Related papers (2025-02-28T21:53:47Z) - From Words to Collisions: LLM-Guided Evaluation and Adversarial Generation of Safety-Critical Driving Scenarios [6.681744368557208]
Large Language Models (LLMs) and structured scenario parsing and prompt engineering are used to generate safety-critical driving scenarios.<n>We validate our approach using a 2D simulation framework and multiple pre-trained LLMs.<n>We conclude that an LLM equipped with domain-informed prompting techniques can effectively evaluate and generate safety-critical driving scenarios.
arXiv Detail & Related papers (2025-02-04T09:19:13Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - CRASH: Challenging Reinforcement-Learning Based Adversarial Scenarios For Safety Hardening [16.305837225117607]
This paper introduces CRASH - Challenging Reinforcement-learning based Adversarial scenarios for Safety Hardening.
First CRASH can control adversarial Non Player Character (NPC) agents in an AV simulator to automatically induce collisions with the Ego vehicle.
We also propose a novel approach, that we term safety hardening, which iteratively refines the motion planner by simulating improvement scenarios against adversarial agents.
arXiv Detail & Related papers (2024-11-26T00:00:27Z) - Foundation Models for Rapid Autonomy Validation [4.417336418010182]
A key challenge is that an autonomous vehicle requires testing in every kind of driving scenario it could encounter.
We propose the use of a behavior foundation model, specifically a masked autoencoder (MAE), trained to reconstruct driving scenarios.
arXiv Detail & Related papers (2024-10-22T15:32:43Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
Foundation models, e.g., large language models (LLMs), trained on internet-scale data possess zero-shot capabilities.
We present a two-stage reasoning framework that incorporates the judgement regarding potential anomalies into a safe control framework.
This enables our monitor to improve the trustworthiness of dynamic robotic systems, such as quadrotors or autonomous vehicles.
arXiv Detail & Related papers (2024-07-11T17:59:22Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning [1.1339580074756188]
Offline reinforcement learning (RL) provides a framework for learning decision-making from offline data.
Self-driving vehicles (SDV) learn a policy, which potentially even outperforms the behavior in the sub-optimal data set.
This motivates the use of model-based offline RL approaches, which leverage planning.
arXiv Detail & Related papers (2021-11-22T10:37:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.