UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning
- URL: http://arxiv.org/abs/2111.11097v2
- Date: Tue, 23 Nov 2021 10:45:17 GMT
- Title: UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning
- Authors: Christopher Diehl, Timo Sievernich, Martin Kr\"uger, Frank Hoffmann,
Torsten Bertram
- Abstract summary: Offline reinforcement learning (RL) provides a framework for learning decision-making from offline data.
Self-driving vehicles (SDV) learn a policy, which potentially even outperforms the behavior in the sub-optimal data set.
This motivates the use of model-based offline RL approaches, which leverage planning.
- Score: 1.1339580074756188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning (RL) provides a framework for learning
decision-making from offline data and therefore constitutes a promising
approach for real-world applications as automated driving. Self-driving
vehicles (SDV) learn a policy, which potentially even outperforms the behavior
in the sub-optimal data set. Especially in safety-critical applications as
automated driving, explainability and transferability are key to success. This
motivates the use of model-based offline RL approaches, which leverage
planning. However, current state-of-the-art methods often neglect the influence
of aleatoric uncertainty arising from the stochastic behavior of multi-agent
systems. This work proposes a novel approach for Uncertainty-aware Model-Based
Offline REinforcement Learning Leveraging plAnning (UMBRELLA), which solves the
prediction, planning, and control problem of the SDV jointly in an
interpretable learning-based fashion. A trained action-conditioned stochastic
dynamics model captures distinctively different future evolutions of the
traffic scene. The analysis provides empirical evidence for the effectiveness
of our approach in challenging automated driving simulations and based on a
real-world public dataset.
Related papers
- Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Finetuning Offline World Models in the Real World [13.46766121896684]
Reinforcement Learning (RL) is notoriously data-inefficient, which makes training on a real robot difficult.
offline RL has been proposed as a framework for training RL policies on pre-existing datasets without any online interaction.
In this work, we consider the problem of pretraining a world model with offline data collected on a real robot, and then finetuning the model on online data collected by planning with the learned model.
arXiv Detail & Related papers (2023-10-24T17:46:12Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - Pessimistic Model Selection for Offline Deep Reinforcement Learning [56.282483586473816]
Deep Reinforcement Learning (DRL) has demonstrated great potentials in solving sequential decision making problems in many applications.
One main barrier is the over-fitting issue that leads to poor generalizability of the policy learned by DRL.
We propose a pessimistic model selection (PMS) approach for offline DRL with a theoretical guarantee.
arXiv Detail & Related papers (2021-11-29T06:29:49Z) - Uncertainty-Aware Model-Based Reinforcement Learning with Application to
Autonomous Driving [2.3303341607459687]
We propose a novel uncertainty-aware model-based reinforcement learning framework, and then implement and validate it in autonomous driving.
The framework is developed based on the adaptive truncation approach, providing virtual interactions between the agent and environment model.
The developed algorithms are then implemented in end-to-end autonomous vehicle control tasks, validated and compared with state-of-the-art methods under various driving scenarios.
arXiv Detail & Related papers (2021-06-23T06:55:14Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.