論文の概要: Multi-agents based User Values Mining for Recommendation
- arxiv url: http://arxiv.org/abs/2505.00981v1
- Date: Fri, 02 May 2025 04:01:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.897143
- Title: Multi-agents based User Values Mining for Recommendation
- Title(参考訳): 推薦のためのマルチエージェントに基づくユーザ価値マイニング
- Authors: Lijian Chen, Wei Yuan, Tong Chen, Xiangyu Zhao, Nguyen Quoc Viet Hung, Hongzhi Yin,
- Abstract要約: 効率的なユーザ値抽出のためのゼロショットマルチLLM協調フレームワークを提案する。
本研究は,本質的な意味を保ちながら,項目内容のコンデンスにテキスト要約手法を適用した。
幻覚を緩和するために,評価役と監督役の2つの特殊エージェントの役割を導入する。
- 参考スコア(独自算出の注目度): 52.26100802380767
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recommender systems have rapidly evolved and become integral to many online services. However, existing systems sometimes produce unstable and unsatisfactory recommendations that fail to align with users' fundamental and long-term preferences. This is because they primarily focus on extracting shallow and short-term interests from user behavior data, which is inherently dynamic and challenging to model. Unlike these transient interests, user values are more stable and play a crucial role in shaping user behaviors, such as purchasing items and consuming content. Incorporating user values into recommender systems can help stabilize recommendation performance and ensure results better reflect users' latent preferences. However, acquiring user values is typically difficult and costly. To address this challenge, we leverage the strong language understanding, zero-shot inference, and generalization capabilities of Large Language Models (LLMs) to extract user values from users' historical interactions. Unfortunately, direct extraction using LLMs presents several challenges such as length constraints and hallucination. To overcome these issues, we propose ZOOM, a zero-shot multi-LLM collaborative framework for effective and accurate user value extraction. In ZOOM, we apply text summarization techniques to condense item content while preserving essential meaning. To mitigate hallucinations, ZOOM introduces two specialized agent roles: evaluators and supervisors, to collaboratively generate accurate user values. Extensive experiments on two widely used recommendation datasets with two state-of-the-art recommendation models demonstrate the effectiveness and generalization of our framework in automatic user value mining and recommendation performance improvement.
- Abstract(参考訳): レコメンダシステムは急速に進化し、多くのオンラインサービスに不可欠なものになっている。
しかし、既存のシステムは時々不安定で不満足なレコメンデーションを生成し、ユーザーの基本的かつ長期的嗜好と一致しない。
これは、主に、ユーザー行動データから浅く短期的な関心を抽出することに焦点を当てているためである。
これらの一時的な利益とは異なり、ユーザー価値はより安定しており、アイテムの購入やコンテンツの消費といったユーザー行動を形成する上で重要な役割を果たす。
ユーザの値をレコメンデーションシステムに組み込むことは、レコメンデーションパフォーマンスを安定させ、ユーザの潜む好みをよりよく反映させるのに役立つ。
しかし、一般的にユーザ価値の獲得は困難でコストがかかる。
この課題に対処するために,我々は,Large Language Models (LLM) の強力な言語理解,ゼロショット推論,一般化機能を活用し,ユーザの過去のインタラクションからユーザ価値を抽出する。
残念ながら、LLMを用いた直接抽出は、長さの制約や幻覚といったいくつかの課題を提示している。
この問題を解決するために,ZOOMを提案する。ZOOMはゼロショットのマルチLLM協調フレームワークで,効率よく正確なユーザ値抽出を行う。
ZOOMでは、本質的な意味を保ちながら、項目内容のコンデンスにテキスト要約技術を適用する。
幻覚を軽減するため、ZOOMは2つの特殊エージェントの役割、すなわち評価役と監督役を導入し、正確なユーザ価値を協調的に生成する。
2つの最先端レコメンデーションモデルを用いた2つの広く利用されているレコメンデーションデータセットに関する広範な実験は、自動ユーザ価値マイニングおよびレコメンデーションパフォーマンス改善における我々のフレームワークの有効性と一般化を実証している。
関連論文リスト
- Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
会話レコメンデーションシステム(CRS)は、マルチターンインタラクションを使用してユーザの好みを捉え、パーソナライズされたレコメンデーションを提供する。
本稿では,CRSと自動インタラクションを行うための生成報酬モデルに基づくシミュレーションユーザGRSUを提案する。
論文 参考訳(メタデータ) (2025-04-29T06:37:30Z) - AdaptRec: A Self-Adaptive Framework for Sequential Recommendations with Large Language Models [10.52052172996229]
AdaptRecは、明示的な協調シグナルを組み込むことで、シーケンシャルなレコメンデーションのためにLarge Language Modelsを活用する、自己適応型のフラムワークである。
本研究では,その行動系列を自然言語に変換するユーザコンテキスト適応型レコメンデーション・プロンプトを開発し,これらの情報をレコメンデーション・プロセスに明示的に統合する。
AdaptRecの優れたパフォーマンスを示す実験では、HitRatio@1スコアの7.13%、18.16%、10.41%が現実世界のデータセットで大幅に改善されている。
論文 参考訳(メタデータ) (2025-04-06T00:30:50Z) - Enhancing User Intent for Recommendation Systems via Large Language Models [0.0]
DUIPはLSTMネットワークとLLM(Large Language Models)を組み合わせた新しいフレームワークで、ユーザの意図を動的に把握し、パーソナライズされたアイテムレコメンデーションを生成する。
この結果から,DUIPは次世代レコメンデーションシステムにとって有望なアプローチであり,クロスモーダルレコメンデーションとスケーラビリティのさらなる向上の可能性が示唆された。
論文 参考訳(メタデータ) (2025-01-18T20:35:03Z) - RecLM: Recommendation Instruction Tuning [17.780484832381994]
本稿では,大規模言語モデルと協調フィルタリングをシームレスに統合するモデル非依存の指導訓練パラダイムを提案する。
提案した$underlineRec$ommendationは、慎重に設計された強化学習報酬関数により、ユーザの好みの多様性を捕捉する。
論文 参考訳(メタデータ) (2024-12-26T17:51:54Z) - LIBER: Lifelong User Behavior Modeling Based on Large Language Models [42.045535303737694]
大規模言語モデルに基づく生涯ユーザ行動モデリング(LIBER)を提案する。
LIBERはHuaweiの音楽レコメンデーションサービスにデプロイされ、ユーザーの再生回数と再生時間の3.01%と7.69%を大幅に改善した。
論文 参考訳(メタデータ) (2024-11-22T03:43:41Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
現実世界のシステムでは、ほとんどのユーザーはほんの一握りのアイテムしか扱わないが、ほとんどのアイテムは滅多に消費されない。
これら2つの課題は、ロングテールユーザーとロングテールアイテムの課題として知られ、しばしば既存のシークエンシャルレコメンデーションシステムに困難をもたらす。
本稿では,これらの課題に対処するため,Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR)を提案する。
論文 参考訳(メタデータ) (2024-05-31T07:24:42Z) - InteraRec: Screenshot Based Recommendations Using Multimodal Large Language Models [0.6926105253992517]
InteraRecと呼ばれる洗練されたインタラクティブなレコメンデーションフレームワークを紹介します。
InteraRecは、ユーザがWebサイトをナビゲートするときに、Webページの高周波スクリーンショットをキャプチャする。
ユーザに対して価値あるパーソナライズされたオファリングを提供する上で、InteraRecの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-26T17:47:57Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。