論文の概要: Where's the liability in the Generative Era? Recovery-based Black-Box Detection of AI-Generated Content
- arxiv url: http://arxiv.org/abs/2505.01008v1
- Date: Fri, 02 May 2025 05:11:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.912495
- Title: Where's the liability in the Generative Era? Recovery-based Black-Box Detection of AI-Generated Content
- Title(参考訳): 生成時代の負債はどこにあるのか?AI生成コンテンツの回復に基づくブラックボックス検出
- Authors: Haoyue Bai, Yiyou Sun, Wei Cheng, Haifeng Chen,
- Abstract要約: APIアクセスのみを必要とする新しいブラックボックス検出フレームワークを導入する。
画像がモデル自身によって生成された可能性を測定する。
マスクされた画像入力をサポートしないブラックボックスモデルに対して、ターゲットモデル分布に適合するように訓練された費用効率の良い代理モデルを導入する。
- 参考スコア(独自算出の注目度): 42.68683643671603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent proliferation of photorealistic images created by generative models has sparked both excitement and concern, as these images are increasingly indistinguishable from real ones to the human eye. While offering new creative and commercial possibilities, the potential for misuse, such as in misinformation and fraud, highlights the need for effective detection methods. Current detection approaches often rely on access to model weights or require extensive collections of real image datasets, limiting their scalability and practical application in real world scenarios. In this work, we introduce a novel black box detection framework that requires only API access, sidestepping the need for model weights or large auxiliary datasets. Our approach leverages a corrupt and recover strategy: by masking part of an image and assessing the model ability to reconstruct it, we measure the likelihood that the image was generated by the model itself. For black-box models that do not support masked image inputs, we incorporate a cost efficient surrogate model trained to align with the target model distribution, enhancing detection capability. Our framework demonstrates strong performance, outperforming baseline methods by 4.31% in mean average precision across eight diffusion model variant datasets.
- Abstract(参考訳): 生成モデルが生成するフォトリアリスティック画像の最近の増殖は、これらの画像が現実のものと人間の目と区別しにくくなっているため、興奮と関心の両方を引き起こしている。
新たな創造的および商業的可能性を提供する一方で、誤情報や詐欺などの誤用の可能性は、効果的な検出方法の必要性を強調している。
現在の検出アプローチは、しばしばモデルウェイトへのアクセスに依存するか、あるいは実際の画像データセットの広範な収集を必要とし、現実のシナリオにおけるスケーラビリティと実用性を制限する。
そこで本研究では,APIアクセスのみを必要とするブラックボックス検出フレームワークを導入し,モデルウェイトや大規模な補助データセットの必要性を回避した。
画像の一部を隠蔽し、再構成するモデル能力を評価することによって、画像がモデル自身によって生成された可能性を測定する。
マスクされた画像入力をサポートしないブラックボックスモデルに対して、ターゲットモデル分布に適合するように訓練されたコスト効率の良い代理モデルを導入し、検出能力を向上する。
本フレームワークは,8つの拡散モデル変動データセットの平均精度を4.31%向上させ,高い性能を示す。
関連論文リスト
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
新しいパーソナライズ技術は、特定のテーマやスタイルのイメージを作成するために、事前訓練されたベースモデルをカスタマイズするために提案されている。
このような軽量なソリューションは、パーソナライズされたモデルが不正なデータからトレーニングされているかどうかに関して、新たな懸念を生じさせる。
我々は、ブラックボックスパーソナライズされたテキスト・ツー・イメージ拡散モデルにおいて、不正なデータ使用を積極的に追跡する新しい手法であるSIRENを紹介する。
論文 参考訳(メタデータ) (2024-10-14T12:29:23Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
拡散モデル(DM)は画像生成に革命をもたらし、様々な分野にまたがる高品質な画像を生成する。
超現実的画像を作成する能力は、現実的コンテンツと合成的コンテンツを区別する上で大きな課題となる。
この研究は、CLIPモデルによって抽出された画像とテキストの特徴をMLP(Multilayer Perceptron)分類器と統合する堅牢な検出フレームワークを導入する。
論文 参考訳(メタデータ) (2024-04-19T14:30:41Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - UMat: Uncertainty-Aware Single Image High Resolution Material Capture [2.416160525187799]
本研究では, 物体の単一拡散像から正規性, 特異性, 粗さを復元する学習手法を提案する。
本手法は材料デジタル化における不確実性をモデル化する問題に最初に対処する手法である。
論文 参考訳(メタデータ) (2023-05-25T17:59:04Z) - Model Watermarking for Image Processing Networks [120.918532981871]
深層モデルの知的財産権を保護する方法は、非常に重要であるが、真に研究されていない問題である。
画像処理モデルを保護するための最初のモデル透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-25T18:36:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。