論文の概要: Quantum Support Vector Regression for Robust Anomaly Detection
- arxiv url: http://arxiv.org/abs/2505.01012v1
- Date: Fri, 02 May 2025 05:23:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.915694
- Title: Quantum Support Vector Regression for Robust Anomaly Detection
- Title(参考訳): ロバスト異常検出のための量子支援ベクトル回帰
- Authors: Kilian Tscharke, Maximilian Wendlinger, Sebastian Issel, Pascal Debus,
- Abstract要約: 異常検出(AD)は、特にITセキュリティの領域において、データ分析において重要である。
本研究では、量子MLアプローチ、特に量子カーネル法の可能性について検討し、ロバストADへの応用について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly Detection (AD) is critical in data analysis, particularly within the domain of IT security. In recent years, Machine Learning (ML) algorithms have emerged as a powerful tool for AD in large-scale data. In this study, we explore the potential of quantum ML approaches, specifically quantum kernel methods, for the application to robust AD. We build upon previous work on Quantum Support Vector Regression (QSVR) for semisupervised AD by conducting a comprehensive benchmark on IBM quantum hardware using eleven datasets. Our results demonstrate that QSVR achieves strong classification performance and even outperforms the noiseless simulation on two of these datasets. Moreover, we investigate the influence of - in the NISQ-era inevitable - quantum noise on the performance of the QSVR. Our findings reveal that the model exhibits robustness to depolarizing, phase damping, phase flip, and bit flip noise, while amplitude damping and miscalibration noise prove to be more disruptive. Finally, we explore the domain of Quantum Adversarial Machine Learning and demonstrate that QSVR is highly vulnerable to adversarial attacks and that noise does not improve the adversarial robustness of the model.
- Abstract(参考訳): 異常検出(AD)は、特にITセキュリティの領域において、データ分析において重要である。
近年,機械学習(ML)アルゴリズムが大規模データにおけるADの強力なツールとして登場している。
本研究では、量子MLアプローチ、特に量子カーネル法の可能性について検討し、ロバストADへの応用について述べる。
我々は,11個のデータセットを用いたIBM量子ハードウェアの総合的なベンチマークを実施し,半教師付きADのためのQSVR(Quantum Support Vector Regression)に関する以前の研究に基づいて構築した。
以上の結果から,QSVRは強い分類性能を示し,これらの2つのデータセットのノイズレスシミュレーションよりも優れていた。
さらに,NISQ時代の量子ノイズがQSVRの性能に与える影響について検討した。
以上の結果から, 非偏極, 位相減衰, 位相反転, ビットフリップノイズに対する頑健性を示す一方, 振幅減衰と誤校正ノイズはより破壊的であることが判明した。
最後に,Quantum Adversarial Machine Learningの領域を探索し,QSVRは敵攻撃に対して非常に脆弱であり,ノイズがモデルの敵の堅牢性を改善することはないことを実証する。
関連論文リスト
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
本稿では,量子振幅推定のための雑音対応ベイズアルゴリズムであるBAEを紹介する。
我々は,BAEがハイゼンベルク限界推定を達成し,他の手法と比較した。
論文 参考訳(メタデータ) (2024-12-05T18:09:41Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - RobustMQ: Benchmarking Robustness of Quantized Models [54.15661421492865]
量子化は、限られたリソースを持つデバイスにディープニューラルネットワーク(DNN)をデプロイする上で不可欠なテクニックである。
我々は、ImageNet上の様々なノイズ(障害攻撃、自然破壊、系統的なノイズ)に対する量子化モデルのロバスト性について、徹底的に評価した。
我々の研究は、モデルとその実世界のシナリオにおける展開の堅牢な定量化を推し進めることに貢献している。
論文 参考訳(メタデータ) (2023-08-04T14:37:12Z) - Semisupervised Anomaly Detection using Support Vector Regression with
Quantum Kernel [0.0]
異常検出(AD)は、他のデータから何らかの方法で逸脱する観測や事象を特定することである。
本稿では,量子カーネルによる支持ベクトル回帰(SVR)の再構成損失に基づく半教師付きADへのアプローチを提案する。
量子カーネルを用いたSVRモデルは、RBFカーネルや他のすべてのモデルよりも優れた性能を示し、全てのデータセットに対して最高平均AUCを達成する。
論文 参考訳(メタデータ) (2023-08-01T15:00:14Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
量子支援ベクトル分類(QSVC)と量子支援ベクトル回帰(QSVR)に基づく量子機械学習モデルについて検討する。
本稿では,これらのモデルについて,ノイズと非ノイズの双方を考慮した量子回路シミュレータとIonQ Harmony量子プロセッサを用いて検討する。
分類タスクでは, 捕捉イオン量子コンピュータの4量子ビットを用いたQSVCモデルの性能は, ノイズレス量子回路シミュレーションで得られたものと同等であった。
論文 参考訳(メタデータ) (2023-07-05T08:06:41Z) - Exploring Unsupervised Anomaly Detection with Quantum Boltzmann Machines
in Fraud Detection [3.955274213382716]
EDR(Restricted Detection and Response)における異常検出は、大企業のサイバーセキュリティプログラムにおいて重要な課題である。
この問題に対する古典的な機械学習アプローチは存在するが、悪質な異常と悪質な異常を区別する際の不満足なパフォーマンスをしばしば示している。
現在使われている機械学習技術よりも優れた一般化を実現するための有望なアプローチは量子生成モデルである。
論文 参考訳(メタデータ) (2023-06-08T07:36:01Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。