Quantum Support Vector Regression for Robust Anomaly Detection
- URL: http://arxiv.org/abs/2505.01012v2
- Date: Tue, 13 May 2025 09:54:41 GMT
- Title: Quantum Support Vector Regression for Robust Anomaly Detection
- Authors: Kilian Tscharke, Maximilian Wendlinger, Sebastian Issel, Pascal Debus,
- Abstract summary: Anomaly Detection (AD) is critical in data analysis, particularly within the domain of IT security.<n>In this study, we explore the potential of quantum ML approaches, specifically quantum kernel methods, for the application to robust AD.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly Detection (AD) is critical in data analysis, particularly within the domain of IT security. In recent years, Machine Learning (ML) algorithms have emerged as a powerful tool for AD in large-scale data. In this study, we explore the potential of quantum ML approaches, specifically quantum kernel methods, for the application to robust AD. We build upon previous work on Quantum Support Vector Regression (QSVR) for semisupervised AD by conducting a comprehensive benchmark on IBM quantum hardware using eleven datasets. Our results demonstrate that QSVR achieves strong classification performance and even outperforms the noiseless simulation on two of these datasets. Moreover, we investigate the influence of - in the NISQ-era inevitable - quantum noise on the performance of the QSVR. Our findings reveal that the model exhibits robustness to depolarizing, phase damping, phase flip, and bit flip noise, while amplitude damping and miscalibration noise prove to be more disruptive. Finally, we explore the domain of Quantum Adversarial Machine Learning and demonstrate that QSVR is highly vulnerable to adversarial attacks and that noise does not improve the adversarial robustness of the model.
Related papers
- Calibration of Quantum Devices via Robust Statistical Methods [45.464983015777314]
We numerically analyze advanced statistical methods for Bayesian inference against the state-of-the-art in quantum parameter learning.<n>We show advantages of these approaches over existing ones, namely under multi-modality and high dimensionality.<n>Our findings have applications in challenging quantumcharacterization tasks namely learning the dynamics of open quantum systems.
arXiv Detail & Related papers (2025-07-09T15:22:17Z) - Quantum-Hybrid Support Vector Machines for Anomaly Detection in Industrial Control Systems [0.3749861135832072]
This study focuses on the parameterization of Quantum Hybrid Support Vector Machines (QSVMs) using three popular datasets from Cyber-Physical Systems (CPS)<n>Results demonstrate that QSVMs outperform traditional classical kernel methods, achieving 13.3% higher F1 scores.<n>This effort suggests that QSVMs can provide a substantial advantage in anomaly detection for ICS, ultimately enhancing the security and integrity of critical infrastructures.
arXiv Detail & Related papers (2025-06-21T21:37:26Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.<n>We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Compressed-sensing Lindbladian quantum tomography with trapped ions [44.99833362998488]
Characterizing the dynamics of quantum systems is a central task for the development of quantum information processors.
We propose two different improvements of Lindbladian quantum tomography (LQT) that alleviate previous shortcomings.
arXiv Detail & Related papers (2024-03-12T09:58:37Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - RobustMQ: Benchmarking Robustness of Quantized Models [54.15661421492865]
Quantization is an essential technique for deploying deep neural networks (DNNs) on devices with limited resources.
We thoroughly evaluated the robustness of quantized models against various noises (adrial attacks, natural corruptions, and systematic noises) on ImageNet.
Our research contributes to advancing the robust quantization of models and their deployment in real-world scenarios.
arXiv Detail & Related papers (2023-08-04T14:37:12Z) - Semisupervised Anomaly Detection using Support Vector Regression with
Quantum Kernel [0.0]
Anomaly detection (AD) involves identifying observations or events that deviate in some way from the rest of the data.
This paper introduces an approach to semisupervised AD based on the reconstruction loss of a support vector regression (SVR) with quantum kernel.
It is shown that our SVR model with quantum kernel performs better than the SVR with RBF kernel as well as all other models, achieving highest mean AUC over all data sets.
arXiv Detail & Related papers (2023-08-01T15:00:14Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
We examine our quantum machine learning models, which are based on quantum support vector classification (QSVC) and quantum support vector regression (QSVR)
We investigate these models using a quantum-circuit simulator, both with and without noise, as well as the IonQ Harmony quantum processor.
For the classification tasks, the performance of our QSVC models using 4 qubits of the trapped-ion quantum computer was comparable to that obtained from noiseless quantum-circuit simulations.
arXiv Detail & Related papers (2023-07-05T08:06:41Z) - Exploring Unsupervised Anomaly Detection with Quantum Boltzmann Machines
in Fraud Detection [3.955274213382716]
Anomaly detection in Restricted Detection and Response (EDR) is a critical task in cybersecurity programs of large companies.
Classical machine learning approaches to this problem exist, but they frequently show unsatisfactory performance in differentiating malicious from benign anomalies.
A promising approach to attain superior generalization than currently employed machine learning techniques are quantum generative models.
arXiv Detail & Related papers (2023-06-08T07:36:01Z) - Exploring the Vulnerabilities of Machine Learning and Quantum Machine
Learning to Adversarial Attacks using a Malware Dataset: A Comparative
Analysis [0.0]
Machine learning (ML) and quantum machine learning (QML) have shown remarkable potential in tackling complex problems.
Their susceptibility to adversarial attacks raises concerns when deploying these systems in security sensitive applications.
We present a comparative analysis of the vulnerability of ML and QNN models to adversarial attacks using a malware dataset.
arXiv Detail & Related papers (2023-05-31T06:31:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.