Quantum-Hybrid Support Vector Machines for Anomaly Detection in Industrial Control Systems
- URL: http://arxiv.org/abs/2506.17824v1
- Date: Sat, 21 Jun 2025 21:37:26 GMT
- Title: Quantum-Hybrid Support Vector Machines for Anomaly Detection in Industrial Control Systems
- Authors: Tyler Cultice, Md. Saif Hassan Onim, Annarita Giani, Himanshu Thapliyal,
- Abstract summary: This study focuses on the parameterization of Quantum Hybrid Support Vector Machines (QSVMs) using three popular datasets from Cyber-Physical Systems (CPS)<n>Results demonstrate that QSVMs outperform traditional classical kernel methods, achieving 13.3% higher F1 scores.<n>This effort suggests that QSVMs can provide a substantial advantage in anomaly detection for ICS, ultimately enhancing the security and integrity of critical infrastructures.
- Score: 0.3749861135832072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sensitive data captured by Industrial Control Systems (ICS) play a large role in the safety and integrity of many critical infrastructures. Detection of anomalous or malicious data, or Anomaly Detection (AD), with machine learning is one of many vital components of cyberphysical security. Quantum kernel-based machine learning methods have shown promise in identifying complex anomalous behavior by leveraging the highly expressive and efficient feature spaces of quantum computing. This study focuses on the parameterization of Quantum Hybrid Support Vector Machines (QSVMs) using three popular datasets from Cyber-Physical Systems (CPS). The results demonstrate that QSVMs outperform traditional classical kernel methods, achieving 13.3% higher F1 scores. Additionally, this research investigates noise using simulations based on real IBMQ hardware, revealing a maximum error of only 0.98% in the QSVM kernels. This error results in an average reduction of 1.57% in classification metrics. Furthermore, the study found that QSVMs show a 91.023% improvement in kernel-target alignment compared to classical methods, indicating a potential "quantum advantage" in anomaly detection for critical infrastructures. This effort suggests that QSVMs can provide a substantial advantage in anomaly detection for ICS, ultimately enhancing the security and integrity of critical infrastructures.
Related papers
- FD4QC: Application of Classical and Quantum-Hybrid Machine Learning for Financial Fraud Detection A Technical Report [36.1999598554273]
This report investigates and compares the efficacy of classical, quantum, and quantum-hybrid machine learning models for the binary behavioural classification of fraudulent financial activities.<n>We implement and evaluate a range of models on the IBM Anti-Money Laundering (AML) dataset.<n>We propose Fraud Detection for Quantum Computing (FD4QC), a practical, API-driven system architecture designed for real-world deployment.
arXiv Detail & Related papers (2025-07-25T16:08:22Z) - Quantum Support Vector Regression for Robust Anomaly Detection [0.0]
Anomaly Detection (AD) is critical in data analysis, particularly within the domain of IT security.<n>In this study, we explore the potential of quantum ML approaches, specifically quantum kernel methods, for the application to robust AD.
arXiv Detail & Related papers (2025-05-02T05:23:34Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Anomaly Detection for Real-World Cyber-Physical Security using Quantum Hybrid Support Vector Machines [0.3749861135832072]
Anomalous data, such as from cyber-attacks, greatly risk the safety of the infrastructure and human operators.
The application of quantum in anomaly detection can greatly improve identification of cyber-attacks in physical sensor data.
We show an F-1 Score of 0.86 and accuracy of 87% on the HAI CPS dataset using an 8-qubit, 16-feature quantum kernel.
arXiv Detail & Related papers (2024-09-08T00:15:30Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Semisupervised Anomaly Detection using Support Vector Regression with
Quantum Kernel [0.0]
Anomaly detection (AD) involves identifying observations or events that deviate in some way from the rest of the data.
This paper introduces an approach to semisupervised AD based on the reconstruction loss of a support vector regression (SVR) with quantum kernel.
It is shown that our SVR model with quantum kernel performs better than the SVR with RBF kernel as well as all other models, achieving highest mean AUC over all data sets.
arXiv Detail & Related papers (2023-08-01T15:00:14Z) - Exploring Unsupervised Anomaly Detection with Quantum Boltzmann Machines
in Fraud Detection [3.955274213382716]
Anomaly detection in Restricted Detection and Response (EDR) is a critical task in cybersecurity programs of large companies.
Classical machine learning approaches to this problem exist, but they frequently show unsatisfactory performance in differentiating malicious from benign anomalies.
A promising approach to attain superior generalization than currently employed machine learning techniques are quantum generative models.
arXiv Detail & Related papers (2023-06-08T07:36:01Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.