Edge-preserving Image Denoising via Multi-scale Adaptive Statistical Independence Testing
- URL: http://arxiv.org/abs/2505.01032v1
- Date: Fri, 02 May 2025 06:09:32 GMT
- Title: Edge-preserving Image Denoising via Multi-scale Adaptive Statistical Independence Testing
- Authors: Ruyu Yan, Da-Qing Zhang,
- Abstract summary: We propose a novel Multi-scale Adaptive Independence Testing-based Edge Detection and Denoising (EDD-MAIT)<n>EDD-MAIT integrates a channel attention mechanism with independence testing.<n>It achieves better robustness, accuracy, and efficiency, with improvements in F-score, MSE, PSNR, and reduced runtime.
- Score: 2.8724598079549715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge detection is crucial in image processing, but existing methods often produce overly detailed edge maps, affecting clarity. Fixed-window statistical testing faces issues like scale mismatch and computational redundancy. To address these, we propose a novel Multi-scale Adaptive Independence Testing-based Edge Detection and Denoising (EDD-MAIT), a Multi-scale Adaptive Statistical Testing-based edge detection and denoising method that integrates a channel attention mechanism with independence testing. A gradient-driven adaptive window strategy adjusts window sizes dynamically, improving detail preservation and noise suppression. EDD-MAIT achieves better robustness, accuracy, and efficiency, outperforming traditional and learning-based methods on BSDS500 and BIPED datasets, with improvements in F-score, MSE, PSNR, and reduced runtime. It also shows robustness against Gaussian noise, generating accurate and clean edge maps in noisy environments.
Related papers
- Rethinking Contrastive Learning in Graph Anomaly Detection: A Clean-View Perspective [54.605073936695575]
Graph anomaly detection aims to identify unusual patterns in graph-based data, with wide applications in fields such as web security and financial fraud detection.<n>Existing methods rely on contrastive learning, assuming that a lower similarity between a node and its local subgraph indicates abnormality.<n>The presence of interfering edges invalidates this assumption, since it introduces disruptive noise that compromises the contrastive learning process.<n>We propose a Clean-View Enhanced Graph Anomaly Detection framework (CVGAD), which includes a multi-scale anomaly awareness module to identify key sources of interference in the contrastive learning process.
arXiv Detail & Related papers (2025-05-23T15:05:56Z) - Edge Detection based on Channel Attention and Inter-region Independence Test [2.8724598079549715]
Existing edge detection methods often suffer from noise amplification and excessive retention of non-salient details.<n>We propose CAM-EDIT, a novel framework that integrates Channel Attention Mechanism (CAM) and Edge Detection via Independence Testing (EDIT)<n>The F-measure scores of CAM-EDIT are 0.635 and 0.460, representing improvements of 19.2% to 26.5% over traditional methods.
arXiv Detail & Related papers (2025-05-02T06:30:21Z) - Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations.<n> diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples.<n>We reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space.
arXiv Detail & Related papers (2025-01-22T18:52:06Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - SSP-RACL: Classification of Noisy Fundus Images with Self-Supervised Pretraining and Robust Adaptive Credal Loss [3.8739860035485143]
Fundus image classification is crucial in the computer aided diagnosis tasks, but label noise significantly impairs the performance of deep neural networks.
We propose a robust framework, Self-Supervised Pre-training with Robust Adaptive Credal Loss (SSP-RACL), for handling label noise in fundus image datasets.
arXiv Detail & Related papers (2024-09-25T02:41:58Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - I2V: Towards Texture-Aware Self-Supervised Blind Denoising using
Self-Residual Learning for Real-World Images [8.763680382529412]
pixel-shuffle downsampling (PD) has been proposed to eliminate the spatial correlation of noise.
We propose self-residual learning without the PD process to maintain texture information.
The results of extensive experiments show that the proposed method outperforms state-of-the-art self-supervised blind denoising approaches.
arXiv Detail & Related papers (2023-02-21T08:51:17Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors
for Change Detection [31.125812018296127]
We introduce a novel approach for change detection by pre-training a Deno Diffusionising Probabilistic Model (DDPM)
DDPM learns the training data distribution by gradually converting training images into a Gaussian distribution using a Markov chain.
During inference (i.e., sampling), they can generate a diverse set of samples closer to the training distribution.
Experiments conducted on the LEVIR-CD, WHU-CD, DSIFN-CD, and CDD datasets demonstrate that the proposed DDPM-CD method significantly outperforms the existing change detection methods in terms of F1 score, I
arXiv Detail & Related papers (2022-06-23T17:58:29Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone.
We propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects.
arXiv Detail & Related papers (2022-06-20T16:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.