Low-Precision Training of Large Language Models: Methods, Challenges, and Opportunities
- URL: http://arxiv.org/abs/2505.01043v1
- Date: Fri, 02 May 2025 06:33:25 GMT
- Title: Low-Precision Training of Large Language Models: Methods, Challenges, and Opportunities
- Authors: Zhiwei Hao, Jianyuan Guo, Li Shen, Yong Luo, Han Hu, Guoxia Wang, Dianhai Yu, Yonggang Wen, Dacheng Tao,
- Abstract summary: Large language (LLMs) have achieved impressive performance across various domains.<n>To mitigate this training challenge, low-precision training techniques have been widely adopted.<n>This survey provides a comprehensive review of existing low-precision training methods.
- Score: 72.21897320340136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved impressive performance across various domains. However, the substantial hardware resources required for their training present a significant barrier to efficiency and scalability. To mitigate this challenge, low-precision training techniques have been widely adopted, leading to notable advancements in training efficiency. Despite these gains, low-precision training involves several components$\unicode{x2013}$such as weights, activations, and gradients$\unicode{x2013}$each of which can be represented in different numerical formats. The resulting diversity has created a fragmented landscape in low-precision training research, making it difficult for researchers to gain a unified overview of the field. This survey provides a comprehensive review of existing low-precision training methods. To systematically organize these approaches, we categorize them into three primary groups based on their underlying numerical formats, which is a key factor influencing hardware compatibility, computational efficiency, and ease of reference for readers. The categories are: (1) fixed-point and integer-based methods, (2) floating-point-based methods, and (3) customized format-based methods. Additionally, we discuss quantization-aware training approaches, which share key similarities with low-precision training during forward propagation. Finally, we highlight several promising research directions to advance this field. A collection of papers discussed in this survey is provided in https://github.com/Hao840/Awesome-Low-Precision-Training.
Related papers
- Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis [27.310894780313618]
This paper undertakes a comprehensive comparison of model capabilities at various pretraining intermediate checkpoints.
We confirm that specific downstream metrics exhibit similar training dynamics across models of different sizes.
In addition to our core findings, we've reproduced Amber and OpenLLaMA, releasing their intermediate checkpoints.
arXiv Detail & Related papers (2024-04-01T16:00:01Z) - A Simple-but-effective Baseline for Training-free Class-Agnostic Counting [28.18693237718039]
Class-Agnostic Counting (CAC) seeks to accurately count objects in a given image with only a few reference examples.<n>Recent efforts have shown that it's possible to accomplish this without training by utilizing pre-existing foundation models.<n>We present a training-free solution that effectively bridges this performance gap, serving as a strong baseline.
arXiv Detail & Related papers (2024-03-03T07:19:50Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Efficient Training of One Class Classification-SVMs [0.0]
This study examines the use of a highly effective training method to conduct one-class classification.
In this paper, an effective algorithm for dual soft-margin one-class SVM training is presented.
arXiv Detail & Related papers (2023-09-28T15:35:16Z) - You Only Need End-to-End Training for Long-Tailed Recognition [8.789819609485225]
Cross-entropy loss tends to produce highly correlated features on imbalanced data.
We propose two novel modules, Block-based Relatively Balanced Batch Sampler (B3RS) and Batch Embedded Training (BET)
Experimental results on the long-tailed classification benchmarks, CIFAR-LT and ImageNet-LT, demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2021-12-11T11:44:09Z) - Label, Verify, Correct: A Simple Few Shot Object Detection Method [93.84801062680786]
We introduce a simple pseudo-labelling method to source high-quality pseudo-annotations from a training set.
We present two novel methods to improve the precision of the pseudo-labelling process.
Our method achieves state-of-the-art or second-best performance compared to existing approaches.
arXiv Detail & Related papers (2021-12-10T18:59:06Z) - Partner-Assisted Learning for Few-Shot Image Classification [54.66864961784989]
Few-shot Learning has been studied to mimic human visual capabilities and learn effective models without the need of exhaustive human annotation.
In this paper, we focus on the design of training strategy to obtain an elemental representation such that the prototype of each novel class can be estimated from a few labeled samples.
We propose a two-stage training scheme, which first trains a partner encoder to model pair-wise similarities and extract features serving as soft-anchors, and then trains a main encoder by aligning its outputs with soft-anchors while attempting to maximize classification performance.
arXiv Detail & Related papers (2021-09-15T22:46:19Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Training few-shot classification via the perspective of minibatch and
pretraining [10.007569291231915]
Few-shot classification is a challenging task which aims to formulate the ability of humans to learn concepts from limited prior data.
Recent progress in few-shot classification has featured meta-learning.
We propose multi-episode and cross-way training techniques, which respectively correspond to the minibatch and pretraining in classification problems.
arXiv Detail & Related papers (2020-04-10T03:14:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.