Federated Adapter on Foundation Models: An Out-Of-Distribution Approach
- URL: http://arxiv.org/abs/2505.01075v1
- Date: Fri, 02 May 2025 07:33:00 GMT
- Title: Federated Adapter on Foundation Models: An Out-Of-Distribution Approach
- Authors: Yiyuan Yang, Guodong Long, Tianyi Zhou, Qinghua Lu, Shanshan Ye, Jing Jiang,
- Abstract summary: We propose a privacy-preserving approach to fine-tune Federated Foundation Models (FedFM)<n>FedOA employs adapter-based parameter-tuning methods for efficacy and introduces distance-based regularization to distributions and guarantee OOD generalization for each client.
- Score: 42.31209296544899
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As foundation models gain prominence, Federated Foundation Models (FedFM) have emerged as a privacy-preserving approach to collaboratively fine-tune models in federated learning (FL) frameworks using distributed datasets across clients. A key challenge for FedFM, given the versatile nature of foundation models, is addressing out-of-distribution (OOD) generalization, where unseen tasks or clients may exhibit distribution shifts leading to suboptimal performance. Although numerous studies have explored OOD generalization in conventional FL, these methods are inadequate for FedFM due to the challenges posed by large parameter scales and increased data heterogeneity. To address these, we propose FedOA, which employs adapter-based parameter-efficient fine-tuning methods for efficacy and introduces personalized adapters with feature distance-based regularization to align distributions and guarantee OOD generalization for each client. Theoretically, we demonstrate that the conventional aggregated global model in FedFM inherently retains OOD generalization capabilities, and our proposed method enhances the personalized model's OOD generalization through regularization informed by the global model, with proven convergence under general non-convex settings. Empirically, the effectiveness of the proposed method is validated on benchmark datasets across various NLP tasks.
Related papers
- Generalized and Personalized Federated Learning with Foundation Models via Orthogonal Transformations [4.008780119020479]
Federated Learning aims to train models across decentralized clients or devices holding local data without the need for centralized data collection.<n>We introduce FedOT, a novel approach that leverages black-box foundation models.<n>FedOT mitigates gradient conflicts across diverse clients, preserves semantic integrity, and achieves robust performance even in the presence of substantial data.
arXiv Detail & Related papers (2025-05-26T12:18:24Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
Mobile devices, including smartphones and laptops, generate decentralized and heterogeneous data.
Federated Learning (FL) offers a promising alternative by enabling collaborative training of a global model across decentralized devices without data sharing.
This paper focuses on data-dependent heterogeneity in FL and proposes a novel approach leveraging mean latent representations extracted from locally trained models.
arXiv Detail & Related papers (2024-11-10T04:03:09Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Dual-Personalizing Adapter for Federated Foundation Models [35.863585349109385]
We propose a Federated Dual-Personalizing Adapter architecture to handle test-time distribution shifts simultaneously.<n>The effectiveness of the proposed method has been evaluated on benchmark datasets across different NLP tasks.
arXiv Detail & Related papers (2024-03-28T08:19:33Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Is Aggregation the Only Choice? Federated Learning via Layer-wise Model Recombination [33.12164201146458]
We propose a novel and FL paradigm named FedMR (Federated Model Recombination)
The goal of FedMR is to guide the recombined models to be trained towards a flat area.
Compared with state-of-the-art FL methods, FedMR can significantly improve the inference accuracy without exposing privacy of each client.
arXiv Detail & Related papers (2023-05-18T05:58:24Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.