The thermodynamic uncertainty relation of a quantum-mechanically coupled two-qubit system
- URL: http://arxiv.org/abs/2505.01121v2
- Date: Thu, 17 Jul 2025 21:23:39 GMT
- Title: The thermodynamic uncertainty relation of a quantum-mechanically coupled two-qubit system
- Authors: Kwang Hyun Cho, Hyukjoon Kwon, Changbong Hyeon,
- Abstract summary: We study how the quantum coupling between the two qubits affects the photon current, fluctuations, and the TUR bound.<n>Our findings form the basis for understanding the TUR of more general $N$-qubit systems.
- Score: 3.9482012852779085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The minimal bound of the thermodynamic uncertainty relation (TUR) is modulated from that of the classical counterpart ($\mathcal{Q}_{\rm min}=2$) when a quantumness is present in the dynamical process far from equilibrium. A recent study on a dissipative two-level system (TLS) subject to an external field indicates that quantum coherence can suppress the fluctuations of the irreversible current and loosens the TUR bound to $\mathcal{Q}_{\rm min}^{\rm TLS}\approx 1.25$. Here, we extend on the field-driven single TLS % in a photonic bath to a quantum-mechanically coupled two-qubit system (TQS), and explore how the quantum coupling between the two qubits, an additional complexity introduced to the probem of TLS, affects the photon current, fluctuations, and the TUR bound. We find that the TUR bound of TQS depends on the strength of coupling, such that $\mathcal{Q}_{\rm min}^{\rm TQS}=\mathcal{Q}_{\rm min}^{\rm TLS}\approx 1.25$ when the two qubits are effectively decoupled under weak coupling, whereas another loose bound $\mathcal{Q}_{\rm min}^{\rm TQS}\approx 1.36$ is identified for two strongly coupled qubits under strong fields. By contrasting the TQS against two coupled noisy oscillators, we illuminate the quantumness unique to the TQS and its effect on the TUR. Our findings from the study of TQS form the basis for understanding the TUR of more general $N$-qubit systems.
Related papers
- Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.<n>We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.<n>We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Non-stabilizerness of Neural Quantum States [41.94295877935867]
We introduce a methodology to estimate non-stabilizerness or "magic", a key resource for quantum complexity, with Neural Quantum States (NQS)<n>We study the magic content in an ensemble of random NQS, demonstrating that neural network parametrizations of the wave function capture finite non-stabilizerness besides large entanglement.
arXiv Detail & Related papers (2025-02-13T19:14:15Z) - Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.<n>This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.<n>We show how to lift classical slow mixing results in the presence of a transverse field using Poisson Feynman-Kac techniques.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Disentangling the Impact of Quasiparticles and Two-Level Systems on the Statistics of Superconducting Qubit Lifetime [31.874825130479174]
Temporal fluctuations in the superconducting qubit lifetime, $T_$, bring up additional challenges in building a fault-tolerant quantum computer.<n>We report $T_$ measurements on the qubits with different geometrical footprints and surface dielectrics as a function of the temperature.<n>We find that $Gamma_$ variances in the qubit with a small footprint are more susceptible to the QP and TLS fluctuations than those in the large-footprint qubits.
arXiv Detail & Related papers (2024-09-16T02:02:55Z) - Quantum State Transfer in Interacting, Multiple-Excitation Systems [41.94295877935867]
Quantum state transfer (QST) describes the coherent passage of quantum information from one node to another.
We describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST.
The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
arXiv Detail & Related papers (2024-05-10T23:46:35Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Qubit dephasing by spectrally diffusing quantum two-level systems [44.99833362998488]
We investigate the pure dephasing of a Josephson qubit due to the spectral diffusion of two-level systems that are close to resonance with the qubit.
We show that this pure dephasing mechanism can be mitigated, allowing enhancement of superconducting qubits coherence time.
arXiv Detail & Related papers (2023-06-27T07:48:42Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Multi-qubit time-varying quantum channels for NISQ-era superconducting
quantum processors [0.24466725954625884]
We study the fluctuations of the relaxation times of multi-qubit quantum processors ibmq_quito, ibmq_belem, ibmq_lima, ibmq_santiago and ibmq_santiago.
arXiv Detail & Related papers (2022-07-14T11:50:37Z) - Analyticity constraints bound the decay of the spectral form factor [0.0]
Quantum chaos cannot develop faster than $lambda leq 2 pi/(hbar beta)$ for systems in thermal equilibrium.
We show that similar constraints also bound the decay of the spectral form factor (SFF)
The relation of the derived bound with other known bounds, including quantum speed limits, is discussed.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Measurement-induced entanglement transitions in many-body localized
systems [0.0]
We investigate measurement-induced entanglement transitions in a system where the underlying unitary dynamics are many-body localized (MBL)
This work further demonstrates how the nature of the measurement-induced entanglement transition depends on the scrambling nature of the underlying unitary dynamics.
This leads to further questions on the control and simulation of entangled quantum states by measurements in open quantum systems.
arXiv Detail & Related papers (2020-05-27T19:26:12Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z) - Quantum correlations in $\mathcal{PT}$-symmetric systems [0.0]
We study the dynamics of correlations in a paradigmatic setup to observe $mathcalPT$-symmetric physics.
Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely.
arXiv Detail & Related papers (2020-02-25T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.