On the Limitations of Steering in Language Model Alignment
- URL: http://arxiv.org/abs/2505.01162v1
- Date: Fri, 02 May 2025 10:08:34 GMT
- Title: On the Limitations of Steering in Language Model Alignment
- Authors: Chebrolu Niranjan, Kokil Jaidka, Gerard Christopher Yeo,
- Abstract summary: We propose a framework to assess the limitations of steering vectors as alignment mechanisms.<n>Using a framework of transformer hook interventions and antonym-based function vectors, we evaluate the role of prompt structure and context complexity in steering effectiveness.
- Score: 10.014248704653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Steering vectors are a promising approach to aligning language model behavior at inference time. In this paper, we propose a framework to assess the limitations of steering vectors as alignment mechanisms. Using a framework of transformer hook interventions and antonym-based function vectors, we evaluate the role of prompt structure and context complexity in steering effectiveness. Our findings indicate that steering vectors are promising for specific alignment tasks, such as value alignment, but may not provide a robust foundation for general-purpose alignment in LLMs, particularly in complex scenarios. We establish a methodological foundation for future investigations into steering capabilities of reasoning models.
Related papers
- SAE-SSV: Supervised Steering in Sparse Representation Spaces for Reliable Control of Language Models [41.553639748766784]
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation.<n>This paper introduces a novel supervised steering approach that operates in sparse, interpretable representation spaces.
arXiv Detail & Related papers (2025-05-22T03:46:57Z) - ExpertSteer: Intervening in LLMs through Expert Knowledge [71.12193680015622]
Activation steering offers a promising method to control the generation process of Large Language Models.<n>We propose ExpertSteer, a novel approach that leverages arbitrary specialized expert models to generate steering vectors.<n>We conduct comprehensive experiments using three LLMs on 15 popular benchmarks across four distinct domains.
arXiv Detail & Related papers (2025-05-18T08:55:46Z) - Steering Risk Preferences in Large Language Models by Aligning Behavioral and Neural Representations [4.029252551781513]
We propose a principled approach for uncovering steering vectors.<n>We focus on extracting latent risk preferences from large language models.<n>We show that the resulting steering vectors successfully and reliably modulate LLM outputs in line with the targeted behavior.
arXiv Detail & Related papers (2025-05-16T18:23:10Z) - Investigating Generalization of One-shot LLM Steering Vectors [21.2431937128876]
We propose optimizing steering vectors through gradient descent on a single training example.<n>We find that the resulting vectors effectively mediate safety-relevant behaviors in multiple models.
arXiv Detail & Related papers (2025-02-26T06:13:01Z) - Improving Instruction-Following in Language Models through Activation Steering [58.876600545898675]
We derive instruction-specific vector representations from language models and use them to steer models accordingly.<n>We demonstrate how this method can enhance model adherence to constraints such as output format, length, and word inclusion.<n>Our findings demonstrate that activation steering offers a practical and scalable approach for fine-grained control in language generation.
arXiv Detail & Related papers (2024-10-15T08:38:20Z) - Analyzing the Generalization and Reliability of Steering Vectors [8.253773195379166]
We show that steering vectors have substantial limitations both in- and out-of-distribution.<n>In-distribution, steerability is highly variable across different inputs.<n>Out-of-distribution, while steering vectors often generalise well, for several concepts they are brittle to reasonable changes in the prompt.
arXiv Detail & Related papers (2024-07-17T08:32:03Z) - Personalized Steering of Large Language Models: Versatile Steering Vectors Through Bi-directional Preference Optimization [34.05163996072159]
"steering vectors" are extracted from the activations of human preference data.
This work proposes an innovative approach that could produce more effective steering vectors through bi-directional preference optimization.
Our method is designed to allow steering vectors to directly influence the generation probability of contrastive human preference data pairs.
arXiv Detail & Related papers (2024-05-28T05:10:40Z) - AutoGuide: Automated Generation and Selection of Context-Aware Guidelines for Large Language Model Agents [74.17623527375241]
We introduce a novel framework, called AutoGuide, which automatically generates context-aware guidelines from offline experiences.<n>As a result, our guidelines facilitate the provision of relevant knowledge for the agent's current decision-making process.<n>Our evaluation demonstrates that AutoGuide significantly outperforms competitive baselines in complex benchmark domains.
arXiv Detail & Related papers (2024-03-13T22:06:03Z) - Context-aware Fine-tuning of Self-supervised Speech Models [56.95389222319555]
We study the use of context, i.e., surrounding segments, during fine-tuning.
We propose a new approach called context-aware fine-tuning.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks.
arXiv Detail & Related papers (2022-12-16T15:46:15Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - Extracting Latent Steering Vectors from Pretrained Language Models [14.77762401765532]
We show that latent vectors can be extracted directly from language model decoders without fine-tuning.
Experiments show that there exist steering vectors, which, when added to the hidden states of the language model, generate a target sentence nearly perfectly.
We find that distances between steering vectors reflect sentence similarity when evaluated on a textual similarity benchmark.
arXiv Detail & Related papers (2022-05-10T19:04:37Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.