ExpertSteer: Intervening in LLMs through Expert Knowledge
- URL: http://arxiv.org/abs/2505.12313v1
- Date: Sun, 18 May 2025 08:55:46 GMT
- Title: ExpertSteer: Intervening in LLMs through Expert Knowledge
- Authors: Weixuan Wang, Minghao Wu, Barry Haddow, Alexandra Birch,
- Abstract summary: Activation steering offers a promising method to control the generation process of Large Language Models.<n>We propose ExpertSteer, a novel approach that leverages arbitrary specialized expert models to generate steering vectors.<n>We conduct comprehensive experiments using three LLMs on 15 popular benchmarks across four distinct domains.
- Score: 71.12193680015622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) exhibit remarkable capabilities across various tasks, yet guiding them to follow desired behaviours during inference remains a significant challenge. Activation steering offers a promising method to control the generation process of LLMs by modifying their internal activations. However, existing methods commonly intervene in the model's behaviour using steering vectors generated by the model itself, which constrains their effectiveness to that specific model and excludes the possibility of leveraging powerful external expert models for steering. To address these limitations, we propose ExpertSteer, a novel approach that leverages arbitrary specialized expert models to generate steering vectors, enabling intervention in any LLMs. ExpertSteer transfers the knowledge from an expert model to a target LLM through a cohesive four-step process: first aligning representation dimensions with auto-encoders to enable cross-model transfer, then identifying intervention layer pairs based on mutual information analysis, next generating steering vectors from the expert model using Recursive Feature Machines, and finally applying these vectors on the identified layers during inference to selectively guide the target LLM without updating model parameters. We conduct comprehensive experiments using three LLMs on 15 popular benchmarks across four distinct domains. Experiments demonstrate that ExpertSteer significantly outperforms established baselines across diverse tasks at minimal cost.
Related papers
- Can large language models assist choice modelling? Insights into prompting strategies and current models capabilities [0.0]
Large Language Models (LLMs) are widely used to support various disciplines, yet their potential in choice modelling remains relatively unexplored.<n>This work examines the potential of LLMs as assistive agents in the specification and, where technically feasible, estimation of Multinomial Logit models.
arXiv Detail & Related papers (2025-07-29T13:24:44Z) - Training LLM-Based Agents with Synthetic Self-Reflected Trajectories and Partial Masking [61.61356842567952]
We propose STeP, a novel method for improving LLM-based agent training.<n>We synthesize self-reflected trajectories that include reflections and corrections of error steps.<n>Experiments demonstrate that our method improves agent performance across three representative tasks.
arXiv Detail & Related papers (2025-05-26T14:11:12Z) - Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.<n>Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.<n>We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Personalized Steering of Large Language Models: Versatile Steering Vectors Through Bi-directional Preference Optimization [34.05163996072159]
"steering vectors" are extracted from the activations of human preference data.
This work proposes an innovative approach that could produce more effective steering vectors through bi-directional preference optimization.
Our method is designed to allow steering vectors to directly influence the generation probability of contrastive human preference data pairs.
arXiv Detail & Related papers (2024-05-28T05:10:40Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - DEEM: Dynamic Experienced Expert Modeling for Stance Detection [22.826544082557316]
We propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experts and let LLMs reason in a semi-parametric way.
Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks.
arXiv Detail & Related papers (2024-02-23T11:24:00Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving [84.31119464141631]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.<n>Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Driving with LLMs: Fusing Object-Level Vector Modality for Explainable
Autonomous Driving [6.728693243652425]
Large Language Models (LLMs) have shown promise in the autonomous driving sector, particularly in generalization and interpretability.
We introduce a unique object-level multimodal LLM architecture that merges vectorized numeric modalities with a pre-trained LLM to improve context understanding in driving situations.
arXiv Detail & Related papers (2023-10-03T11:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.