論文の概要: VRS-UIE: Value-Driven Reordering Scanning for Underwater Image Enhancement
- arxiv url: http://arxiv.org/abs/2505.01224v2
- Date: Wed, 15 Oct 2025 11:30:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 15:32:13.491636
- Title: VRS-UIE: Value-Driven Reordering Scanning for Underwater Image Enhancement
- Title(参考訳): VRS-UIE:水中画像強調のための値駆動リダクションスキャン
- Authors: Kui Jiang, Yan Luo, Junjun Jiang, Ke Gu, Nan Ma, Xianming Liu,
- Abstract要約: 状態空間モデル(SSM)は、線形複雑性と大域的受容場のために、視覚タスクの有望なバックボーンとして登場した。
大型で均質だが無意味な海洋背景の優位性は、希少で価値ある標的の特徴表現応答を希薄にすることができる。
水中画像強調(UIE)のための新しい値駆動リダクションスキャンフレームワークを提案する。
本フレームワークは, 水バイアスを効果的に抑制し, 構造や色彩の忠実さを保ち, 優れた向上性能(WMambaを平均0.89dB超える)を実現する。
- 参考スコア(独自算出の注目度): 104.78586859995333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State Space Models (SSMs) have emerged as a promising backbone for vision tasks due to their linear complexity and global receptive field. However, in the context of Underwater Image Enhancement (UIE), the standard sequential scanning mechanism is fundamentally challenged by the unique statistical distribution characteristics of underwater scenes. The predominance of large-portion, homogeneous but useless oceanic backgrounds can dilute the feature representation responses of sparse yet valuable targets, thereby impeding effective state propagation and compromising the model's ability to preserve both local semantics and global structure. To address this limitation, we propose a novel Value-Driven Reordering Scanning framework for UIE, termed VRS-UIE. Its core innovation is a Multi-Granularity Value Guidance Learning (MVGL) module that generates a pixel-aligned value map to dynamically reorder the SSM's scanning sequence. This prioritizes informative regions to facilitate the long-range state propagation of salient features. Building upon the MVGL, we design a Mamba-Conv Mixer (MCM) block that synergistically integrates priority-driven global sequencing with dynamically adjusted local convolutions, thereby effectively modeling both large-portion oceanic backgrounds and high-value semantic targets. A Cross-Feature Bridge (CFB) further refines multi-level feature fusion. Extensive experiments demonstrate that our VRS-UIE framework sets a new state-of-the-art, delivering superior enhancement performance (surpassing WMamba by 0.89 dB on average) by effectively suppressing water bias and preserving structural and color fidelity. Furthermore, by incorporating efficient convolutional operators and resolution rescaling, we construct a light-weight yet effective scheme, VRS-UIE-S, suitable for real-time UIE applications.
- Abstract(参考訳): 状態空間モデル(SSM)は、その線形複雑度とグローバルな受容領域のために、ビジョンタスクの有望なバックボーンとして登場した。
しかし、水中画像強調(UIE)の文脈では、標準的なシーケンシャルスキャン機構は、水中シーンの独特な統計分布特性により、基本的には困難である。
大規模で均質だが無意味な海洋背景の優位性は、希少で価値ある目標の特徴表現応答を減らし、効果的な状態伝播を阻害し、局所的な意味論とグローバルな構造の両方を保存するモデルの能力を損なう。
この制限に対処するため,我々はVRS-UIEと呼ばれるUIEのための新しい値駆動リオーダースキャンフレームワークを提案する。
中心となるイノベーションは、SSMのスキャニングシーケンスを動的に並べ替えるピクセル整合値マップを生成するMVGL(Multi-Granularity Value Guidance Learning)モジュールである。
これは、有能な特徴の長距離状態伝播を促進するために、情報領域を優先する。
MVGL上に構築したMamba-Conv Mixer (MCM) ブロックは,動的に調整された局所的な畳み込みと優先度駆動のグローバルシークエンシングを相乗的に統合し,大域的な背景と高価値なセマンティックターゲットの両方を効果的にモデル化する。
クロスフィーチャーブリッジ (CFB) は多層機能融合をさらに洗練する。
我々のVRS-UIEフレームワークは、水バイアスを効果的に抑制し、構造と色彩の忠実さを保ち、優れた強化性能(平均で平均0.89dBのWMambaを通過)を提供する。
さらに、効率的な畳み込み演算子と解像度再スケーリングを組み込むことで、リアルタイムUIEアプリケーションに適した軽量で効果的なVRS-UIE-Sを構築する。
関連論文リスト
- MambaOutRS: A Hybrid CNN-Fourier Architecture for Remote Sensing Image Classification [4.14360329494344]
リモートセンシング画像分類のための新しいハイブリッド畳み込みアーキテクチャであるMambaOutRSを紹介する。
MambaOutRSは、局所的な特徴抽出のためにスタック化されたGated CNNブロック上に構築され、新しいFourier Filter Gate (FFG)モジュールが導入されている。
論文 参考訳(メタデータ) (2025-06-24T12:20:11Z) - An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
現在の主流のアプローチは、CNN、Transformers、Mambasの3つのアーキテクチャパラダイムに基づいている。
混合構造融合に基づく効率的で汎用的なIRモデルであるRestorMixerを提案する。
論文 参考訳(メタデータ) (2025-04-15T08:19:12Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
畳み込み法は、局所的な依存関係をうまく捉えるが、長距離関係に苦慮する。
ビジョントランスフォーマー(ViT)は、グローバルなコンテキストキャプチャでは優れるが、高い計算要求によって妨げられる。
我々は,リアルタイムセマンティックセグメンテーションの効率,精度,堅牢性のバランスをとるために,CNN と ViT の強みを活用したハイブリッドフレームワーク ContextFormer を提案する。
論文 参考訳(メタデータ) (2025-01-31T16:11:04Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
本研究では,マンバをベースとした純フレームワーク(MambaVT)を提案する。
具体的には、長距離クロスフレーム統合コンポーネントを考案し、ターゲットの外観変化にグローバルに適応する。
実験では、RGB-TトラッキングのためのMambaのビジョンの可能性が示され、MambaVTは4つの主要なベンチマークで最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-08-15T02:29:00Z) - RSDehamba: Lightweight Vision Mamba for Remote Sensing Satellite Image Dehazing [19.89130165954241]
リモートセンシング画像デハージング(RSID)は、高品質な画像復元のための不均一かつ物理的に不規則なヘイズ要素を取り除くことを目的としている。
本稿では,RSID分野におけるRSDhambaと呼ばれるマンバモデル上での最初の軽量ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-16T12:12:07Z) - IRSRMamba: Infrared Image Super-Resolution via Mamba-based Wavelet Transform Feature Modulation Model [7.842507196763463]
IRSRMambaはマルチスケール適応のためのウェーブレット変換特徴変調を統合する新しいフレームワークである。
IRSRMambaはPSNR、SSIM、知覚品質において最先端の手法より優れている。
この研究は、高忠実度赤外線画像強調のための有望な方向として、Mambaベースのアーキテクチャを確立する。
論文 参考訳(メタデータ) (2024-05-16T07:49:24Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
高精度な単分子深度推定には長距離相関が不可欠である。
我々は,このグローバルコンテキストを効果的な注意機構でモデル化するためにTransformerを活用することを提案する。
提案したモデルであるDepthFormerは、最先端のモノクル深度推定手法をはるかに超えている。
論文 参考訳(メタデータ) (2022-03-27T05:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。