論文の概要: CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment
- arxiv url: http://arxiv.org/abs/2505.01237v2
- Date: Wed, 21 May 2025 13:54:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 18:05:36.0722
- Title: CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment
- Title(参考訳): CAV-MAE Sync:ファイングラインドアライメントによるコントラストオーディオマスクオートエンコーダの改良
- Authors: Edson Araujo, Andrew Rouditchenko, Yuan Gong, Saurabhchand Bhati, Samuel Thomas, Brian Kingsbury, Leonid Karlinsky, Rogerio Feris, James R. Glass, Hilde Kuehne,
- Abstract要約: CAV-MAE Sync は,自己教師型音声視覚学習のためのオリジナルの CAV-MAE フレームワークの簡易かつ効果的な拡張として提案する。
音声をグローバルな表現ではなく,映像フレームに整合した時間的シーケンスとして扱うことで,モダリティ間のミスマッチに対処する。
パッチトークンのセマンティック負荷を低減するための学習可能なレジスタトークンを導入することにより,空間的ローカライゼーションを改善する。
- 参考スコア(独自算出の注目度): 76.32508013503653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in audio-visual learning have shown promising results in learning representations across modalities. However, most approaches rely on global audio representations that fail to capture fine-grained temporal correspondences with visual frames. Additionally, existing methods often struggle with conflicting optimization objectives when trying to jointly learn reconstruction and cross-modal alignment. In this work, we propose CAV-MAE Sync as a simple yet effective extension of the original CAV-MAE framework for self-supervised audio-visual learning. We address three key challenges: First, we tackle the granularity mismatch between modalities by treating audio as a temporal sequence aligned with video frames, rather than using global representations. Second, we resolve conflicting optimization goals by separating contrastive and reconstruction objectives through dedicated global tokens. Third, we improve spatial localization by introducing learnable register tokens that reduce semantic load on patch tokens. We evaluate the proposed approach on AudioSet, VGG Sound, and the ADE20K Sound dataset on zero-shot retrieval, classification and localization tasks demonstrating state-of-the-art performance and outperforming more complex architectures.
- Abstract(参考訳): 近年の音声視覚学習の進歩は、モダリティ間の学習表現において有望な結果を示している。
しかし、ほとんどのアプローチは、視覚的フレームとの微粒な時間対応を捉えるのに失敗したグローバルな音声表現に依存している。
さらに、既存の手法は、再構築とクロスモーダルアライメントを共同で学習しようとする場合、最適化目標の矛盾に悩まされることが多い。
本研究では,CAV-MAE Sync を,自己教師型音声視覚学習のためのオリジナルの CAV-MAE フレームワークの簡易かつ効果的な拡張として提案する。
まず、グローバルな表現ではなく、ビデオフレームに整合した時間的シーケンスとしてオーディオを扱い、モダリティ間の粒度ミスマッチに対処する。
第2に、コントラストと再構成の目的を専用のグローバルトークンで分離することで、競合する最適化目標を解消する。
第3に、パッチトークンのセマンティック負荷を低減するための学習可能なレジスタトークンを導入することにより、空間的ローカライゼーションを改善する。
我々は、ゼロショット検索、分類、ローカライゼーションタスクにおけるAudioSet、VGG Sound、ADE20K Soundデータセットに対する提案手法の評価を行った。
関連論文リスト
- Enhancing Audiovisual Speech Recognition through Bifocal Preference Optimization [59.1277150358203]
実世界のビデオの音声認識精度を向上させるために、選好最適化手法を提案する。
まず、AV-ASRで発生した一般的なエラーを2つの焦点からシミュレーションすることで、嗜好データを生成する。
次に,AV-ASRモデルを改善するために,入力側と出力側の両方を優先してBPO-AVASRを提案する。
論文 参考訳(メタデータ) (2024-12-26T00:26:45Z) - Audio-visual Generalized Zero-shot Learning the Easy Way [20.60905505473906]
本稿では,EZ-AVGZLについて述べる。
我々は,VGGSound-GZSL,UCF-GZSL,ActivityNet-GZSLベンチマークについて広範な実験を行った。
論文 参考訳(メタデータ) (2024-07-18T01:57:16Z) - Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
我々は新しいデコードパラダイムであるアンダーライン・サンダーライン・エンダーライン・アンダーライン・インダーライン・プロジェクション(LEAP)を導入する。
LEAPは、音声/視覚セグメントの符号化された潜在機能を意味的に独立したラベル埋め込みに反復的に投影する。
LEAPパラダイムを促進するために,新しい音声・視覚的類似性損失関数を含むセマンティック・アウェア・最適化戦略を提案する。
論文 参考訳(メタデータ) (2024-07-11T01:57:08Z) - SyncVSR: Data-Efficient Visual Speech Recognition with End-to-End Crossmodal Audio Token Synchronization [29.53063463863921]
我々は、フレームレベルのクロスモーダル監視に量子化オーディオを利用するエンドツーエンド学習フレームワークSyncVSRを提案する。
音響データと視覚表現を同期するプロジェクション層を統合することで、エンコーダは、非自己回帰的な方法でビデオシーケンスから離散的なオーディオトークンを生成することを学習する。
我々の経験的評価は、最先端の結果を達成するだけでなく、データ使用量を最大9倍に削減できることを示している。
論文 参考訳(メタデータ) (2024-06-18T03:14:22Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Cross-Modal Global Interaction and Local Alignment for Audio-Visual
Speech Recognition [21.477900473255264]
音声・視覚音声認識(AVSR)のための多言語間相互作用と局所アライメント(GILA)アプローチを提案する。
具体的には、A-Vの相補関係をモダリティレベルで捉えるためのグローバル相互作用モデルと、フレームレベルでのA-Vの時間的一貫性をモデル化するための局所アライメントアプローチを設計する。
我々のGILAは、公開ベンチマークのLSS3とLSS2で教師付き学習状況よりも優れています。
論文 参考訳(メタデータ) (2023-05-16T06:41:25Z) - Looking into Your Speech: Learning Cross-modal Affinity for Audio-visual
Speech Separation [73.1652905564163]
本稿では,音声-視覚的ニューラル処理を用いて音声信号と映像を分離する問題に対処する。
従来の手法では、フレームワイドマッチング基準を用いて、音声とビデオの共有情報を抽出する。
音声と視覚ストリーム間の局所的な親和性だけでなく,グローバル通信を学習するクロスモーダル親和性ネットワーク(CaffNet)を提案する。
論文 参考訳(メタデータ) (2021-03-25T15:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。