論文の概要: Helping Large Language Models Protect Themselves: An Enhanced Filtering and Summarization System
- arxiv url: http://arxiv.org/abs/2505.01315v2
- Date: Mon, 05 May 2025 14:46:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 12:43:32.070412
- Title: Helping Large Language Models Protect Themselves: An Enhanced Filtering and Summarization System
- Title(参考訳): 大規模言語モデルによるテーマ保護:拡張フィルタリングと要約システム
- Authors: Sheikh Samit Muhaimin, Spyridon Mastorakis,
- Abstract要約: 大規模言語モデルは、敵の攻撃、操作プロンプト、悪意のある入力のエンコードに弱い。
本研究は,LSMが敵対的あるいは悪意的な入力を自力で認識し,フィルタリングし,防御することのできる,ユニークな防御パラダイムを提案する。
- 参考スコア(独自算出の注目度): 2.0257616108612373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent growth in the use of Large Language Models has made them vulnerable to sophisticated adversarial assaults, manipulative prompts, and encoded malicious inputs. Existing countermeasures frequently necessitate retraining models, which is computationally costly and impracticable for deployment. Without the need for retraining or fine-tuning, this study presents a unique defense paradigm that allows LLMs to recognize, filter, and defend against adversarial or malicious inputs on their own. There are two main parts to the suggested framework: (1) A prompt filtering module that uses sophisticated Natural Language Processing (NLP) techniques, including zero-shot classification, keyword analysis, and encoded content detection (e.g. base64, hexadecimal, URL encoding), to detect, decode, and classify harmful inputs; and (2) A summarization module that processes and summarizes adversarial research literature to give the LLM context-aware defense knowledge. This approach strengthens LLMs' resistance to adversarial exploitation by fusing text extraction, summarization, and harmful prompt analysis. According to experimental results, this integrated technique has a 98.71% success rate in identifying harmful patterns, manipulative language structures, and encoded prompts. By employing a modest amount of adversarial research literature as context, the methodology also allows the model to react correctly to harmful inputs with a larger percentage of jailbreak resistance and refusal rate. While maintaining the quality of LLM responses, the framework dramatically increases LLM's resistance to hostile misuse, demonstrating its efficacy as a quick and easy substitute for time-consuming, retraining-based defenses.
- Abstract(参考訳): 近年のLarge Language Modelsの利用は、高度な敵の攻撃、操作プロンプト、悪意のある入力のエンコードに弱いものとなっている。
既存の対策は、しばしば再訓練モデルを必要とする。
本研究は、再訓練や微調整を必要とせず、LSMが敵や悪意の入力を自力で認識し、フィルタリングし、防御することのできる、ユニークな防御パラダイムを提示する。
提案するフレームワークには,(1)ゼロショット分類,キーワード解析,エンコードされたコンテンツ検出(eg base64, hexadecimal, URLエンコーディング)など,高度な自然言語処理(NLP)技術を用いた,有害な入力を検出し,デコードし,分類するためのプロンプトフィルタリングモジュール,(2)敵国語研究文献を処理・要約する要約モジュール,の2つがある。
このアプローチは、テキスト抽出、要約、有害なプロンプト分析を融合させることにより、LLMの敵対的搾取に対する抵抗を強化する。
実験結果によると、この統合技術は有害パターン、操作言語構造、エンコードプロンプトの識別において98.71%の成功率を持つ。
この手法では, 有害な入力に対して, ジェイルブレイク抵抗率と拒絶率の比率が大きい場合に, モデルが正しく反応することを可能にする。
LLMの応答の質を維持しながら、このフレームワークはLLMの敵の誤用に対する抵抗を劇的に増加させ、その効果を時間を要する再訓練ベースの防御の迅速かつ容易な代替品として示している。
関連論文リスト
- Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond [55.984684518346924]
我々は、知識追跡を逆問題として再考する: 過去の回答を説明できる最小限の自然言語要約を学習し、将来の回答を予測できる。
我々のLanguage Bottleneck Model(LBM)は、解釈可能な知識要約を書くエンコーダLLMと、その要約テキストのみを使用して生徒の反応を再構成し予測しなければならないフリーズデコーダLLMで構成されている。
合成算術ベンチマークと大規模Eediデータセットの実験により、LBMは最先端のKT法と直接LLM法の精度に匹敵する一方で、受講者軌道のオーダーを少なくすることを示した。
論文 参考訳(メタデータ) (2025-06-20T13:21:14Z) - From Threat to Tool: Leveraging Refusal-Aware Injection Attacks for Safety Alignment [4.379304291229695]
LLM攻撃技術を応用したトレーニングフリーでモデルに依存しないフレームワークであるRefusal-Aware Adaptive Injection (RAAI)を紹介する。
RAAIは内部の拒絶信号を検出し、事前に定義されたフレーズを適応的に注入することで、有害で流用な完了を誘導する。
実験の結果,RAAIはLDMを効果的に脱獄させ,平均で2.15%から61.04%までの有害反応率を増加させた。
論文 参考訳(メタデータ) (2025-06-07T08:19:01Z) - Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors [65.27124213266491]
テキスト検出を効果的に欺く訓練不要な方法である textbfContrastive textbfParaphrase textbfAttack (CoPA) を提案する。
CoPAは、大規模言語モデルによって生成される人間のような分布とは対照的に、補助的な機械的な単語分布を構築している。
我々の理論的分析は、提案された攻撃の優越性を示唆している。
論文 参考訳(メタデータ) (2025-05-21T10:08:39Z) - Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
本稿では,半教師付き感情分析のためのフレームワークを提案する。
テキストを意味的に拡張する2つのプロンプト戦略を導入する。
実験により,従来の半教師付き手法よりも優れた性能が得られた。
論文 参考訳(メタデータ) (2025-01-29T12:03:11Z) - TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation [31.231916859341865]
TrustRAGは、生成のために取得される前に、悪意のある、無関係なコンテンツを体系的にフィルタリングするフレームワークである。
TrustRAGは、検索精度、効率、攻撃抵抗を大幅に改善する。
論文 参考訳(メタデータ) (2025-01-01T15:57:34Z) - Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
SASA(Self-disciplined Autoregressive Smpling)は、大規模言語モデル(LLM)の毒性低減のための軽量制御復号アルゴリズムである。
SASAは、自己回帰サンプリング戦略を調整することにより、電流出力のマージンを追跡し、有害な部分空間から世代を分離する。
Llama-3.1-Instruct (8B), Llama-2 (7B), GPT2-L model with the RealToxicityPrompts, BOLD, and AttaQ benchmarks。
論文 参考訳(メタデータ) (2024-10-04T17:45:15Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
大規模言語モデル(LLM)は敵の脅威に対して脆弱である。
本稿では, LLM へのホワイトボックスアクセスを前提とした, 革新的な防御戦略を提案する。
そこで本研究では,アタックプロンプト分類のための残差ストリームの固有なアクティベーションパターンを解析するための新しい手法を適用した。
論文 参考訳(メタデータ) (2024-06-05T13:06:33Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
大規模言語モデル(LLM)の急速な開発は、多くの機会を提供するだけでなく、重要な課題も提示している。
既存のアライメント手法は、人間による注釈付き、欠陥のない命令応答ペアを利用することで、LLMを好ましい結果に導くのが一般的である。
本研究は誤り解析に基づく新しいアライメント手法を提案する。ミスの原因と回避方法を学習するために,LLMを誤った内容に故意に公開する手法である。
論文 参考訳(メタデータ) (2023-10-16T14:59:10Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - Defending Pre-trained Language Models from Adversarial Word
Substitutions Without Performance Sacrifice [42.490810188180546]
敵対的単語置換は 最も困難な テキストの敵対的攻撃方法の1つです
本稿では、ADFAR(Anomaly Detection with Frequency-Aware Randomization)という、コンパクトかつ高性能に保存されたフレームワークを提案する。
本研究では, ADFAR が提案した防衛手法を, より高速な推論速度で大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-05-30T14:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。