Helping Large Language Models Protect Themselves: An Enhanced Filtering and Summarization System
- URL: http://arxiv.org/abs/2505.01315v2
- Date: Mon, 05 May 2025 14:46:48 GMT
- Title: Helping Large Language Models Protect Themselves: An Enhanced Filtering and Summarization System
- Authors: Sheikh Samit Muhaimin, Spyridon Mastorakis,
- Abstract summary: Large Language Models are vulnerable to adversarial assaults, manipulative prompts, and encoded malicious inputs.<n>This study presents a unique defense paradigm that allows LLMs to recognize, filter, and defend against adversarial or malicious inputs on their own.
- Score: 2.0257616108612373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent growth in the use of Large Language Models has made them vulnerable to sophisticated adversarial assaults, manipulative prompts, and encoded malicious inputs. Existing countermeasures frequently necessitate retraining models, which is computationally costly and impracticable for deployment. Without the need for retraining or fine-tuning, this study presents a unique defense paradigm that allows LLMs to recognize, filter, and defend against adversarial or malicious inputs on their own. There are two main parts to the suggested framework: (1) A prompt filtering module that uses sophisticated Natural Language Processing (NLP) techniques, including zero-shot classification, keyword analysis, and encoded content detection (e.g. base64, hexadecimal, URL encoding), to detect, decode, and classify harmful inputs; and (2) A summarization module that processes and summarizes adversarial research literature to give the LLM context-aware defense knowledge. This approach strengthens LLMs' resistance to adversarial exploitation by fusing text extraction, summarization, and harmful prompt analysis. According to experimental results, this integrated technique has a 98.71% success rate in identifying harmful patterns, manipulative language structures, and encoded prompts. By employing a modest amount of adversarial research literature as context, the methodology also allows the model to react correctly to harmful inputs with a larger percentage of jailbreak resistance and refusal rate. While maintaining the quality of LLM responses, the framework dramatically increases LLM's resistance to hostile misuse, demonstrating its efficacy as a quick and easy substitute for time-consuming, retraining-based defenses.
Related papers
- Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond [55.984684518346924]
We recast Knowledge Tracing as an inverse problem: learning the minimum natural-language summary that makes past answers explainable and future answers predictable.<n>Our Language Bottleneck Model (LBM) consists of an encoder LLM that writes an interpretable knowledge summary and a frozen decoder LLM that must reconstruct and predict student responses using only that summary text.<n> Experiments on synthetic arithmetic benchmarks and the large-scale Eedi dataset show that LBMs rival the accuracy of state-of-the-art KT and direct LLM methods while requiring orders-of-magnitude fewer student trajectories.
arXiv Detail & Related papers (2025-06-20T13:21:14Z) - From Threat to Tool: Leveraging Refusal-Aware Injection Attacks for Safety Alignment [4.379304291229695]
We introduce Refusal-Aware Adaptive Injection (RAAI), a training-free, and model-agnostic framework that repurposes LLM attack techniques.<n> RAAI works by detecting internal refusal signals and adaptively injecting predefined phrases to elicit harmful, yet fluent, completions.<n>Our experiments show RAAI effectively jailbreaks LLMs, increasing the harmful response rate from a baseline of 2.15% to up to 61.04% on average.
arXiv Detail & Related papers (2025-06-07T08:19:01Z) - Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors [65.27124213266491]
We propose textbfContrastive textbfParaphrase textbfAttack (CoPA), a training-free method that effectively deceives text detectors.<n>CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by large language models.<n>Our theoretical analysis suggests the superiority of the proposed attack.
arXiv Detail & Related papers (2025-05-21T10:08:39Z) - Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
We propose a framework for semi-supervised sentiment analysis.<n>We introduce two prompting strategies to semantically enhance unlabeled text.<n> Experiments show our method achieves remarkable performance over prior semi-supervised methods.
arXiv Detail & Related papers (2025-01-29T12:03:11Z) - TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation [31.231916859341865]
TrustRAG is a framework that systematically filters malicious and irrelevant content before it is retrieved for generation.<n>TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance.
arXiv Detail & Related papers (2025-01-01T15:57:34Z) - Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
Self-disciplined Autoregressive Sampling (SASA) is a lightweight controlled decoding algorithm for toxicity reduction of large language models (LLMs)
SASA tracks the margin of the current output to steer the generation away from the toxic subspace, by adjusting the autoregressive sampling strategy.
evaluated on LLMs of different scale and nature, namely Llama-3.1-Instruct (8B), Llama-2 (7B), and GPT2-L models with the RealToxicityPrompts, BOLD, and AttaQ benchmarks.
arXiv Detail & Related papers (2024-10-04T17:45:15Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.<n>This paper presents an innovative defensive strategy, given white box access to an LLM.<n>We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges.
Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs.
This study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them.
arXiv Detail & Related papers (2023-10-16T14:59:10Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z) - Defending Pre-trained Language Models from Adversarial Word
Substitutions Without Performance Sacrifice [42.490810188180546]
adversarial word substitution is one of the most challenging textual adversarial attack methods.
This paper presents a compact and performance-preserved framework, Anomaly Detection with Frequency-Aware Randomization (ADFAR)
We show that ADFAR significantly outperforms those newly proposed defense methods over various tasks with much higher inference speed.
arXiv Detail & Related papers (2021-05-30T14:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.