Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis
- URL: http://arxiv.org/abs/2310.10477v6
- Date: Sat, 17 Feb 2024 01:50:10 GMT
- Title: Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis
- Authors: Kai Chen, Chunwei Wang, Kuo Yang, Jianhua Han, Lanqing Hong, Fei Mi,
Hang Xu, Zhengying Liu, Wenyong Huang, Zhenguo Li, Dit-Yan Yeung, Lifeng
Shang, Xin Jiang, Qun Liu
- Abstract summary: The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges.
Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs.
This study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them.
- Score: 127.85293480405082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of large language models (LLMs) has not only provided
numerous opportunities but also presented significant challenges. This becomes
particularly evident when LLMs inadvertently generate harmful or toxic content,
either unintentionally or because of intentional inducement. Existing alignment
methods usually direct LLMs toward the favorable outcomes by utilizing
human-annotated, flawless instruction-response pairs. Conversely, this study
proposes a novel alignment technique based on mistake analysis, which
deliberately exposes LLMs to erroneous content to learn the reasons for
mistakes and how to avoid them. In this case, mistakes are repurposed into
valuable data for alignment, effectively helping to avoid the production of
erroneous responses. Without external models or human annotations, our method
leverages a model's intrinsic ability to discern undesirable mistakes and
improves the safety of its generated responses. Experimental results reveal
that our method outperforms existing alignment approaches in enhancing model
safety while maintaining the overall utility.
Related papers
- Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
Large language models (LLMs) have demonstrated immense utility across various industries.
As LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts.
This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens.
arXiv Detail & Related papers (2024-10-09T12:09:30Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
Large language models show early signs of artificial general intelligence but struggle with hallucinations.
One promising solution is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation.
Recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models.
arXiv Detail & Related papers (2024-04-25T13:10:48Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Towards Safer Large Language Models through Machine Unlearning [19.698620794387338]
Selective Knowledge Unlearning ( SKU) is designed to eliminate harmful knowledge while preserving utility on normal prompts.
First stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge.
Our experiments demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.
arXiv Detail & Related papers (2024-02-15T16:28:34Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - N-Critics: Self-Refinement of Large Language Models with Ensemble of
Critics [5.516095889257118]
We propose a self-correction mechanism for Large Language Models (LLMs) to mitigate issues such as toxicity and fact hallucination.
This method involves refining model outputs through an ensemble of critics and the model's own feedback.
arXiv Detail & Related papers (2023-10-28T11:22:22Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - Pareto Optimal Learning for Estimating Large Language Model Errors [12.21899680905672]
Large Language Models (LLMs) have shown impressive abilities in many applications.
We present a method that generates a risk score to estimate the probability of error in an LLM response by integrating multiple sources of information.
arXiv Detail & Related papers (2023-06-28T21:11:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.