Advancing Seasonal Prediction of Tropical Cyclone Activity with a Hybrid AI-Physics Climate Model
- URL: http://arxiv.org/abs/2505.01455v2
- Date: Thu, 17 Jul 2025 17:20:09 GMT
- Title: Advancing Seasonal Prediction of Tropical Cyclone Activity with a Hybrid AI-Physics Climate Model
- Authors: Gan Zhang, Megha Rao, Janni Yuval, Ming Zhao,
- Abstract summary: Machine learning models are successful with weather forecasting and have shown progress in climate simulations.<n>We show this feasibility using Neural General Circulation Model (NeuralGCM), a hybrid ML-physics atmospheric model developed by Google.
- Score: 2.5701544858386396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) models are successful with weather forecasting and have shown progress in climate simulations, yet leveraging them for useful climate predictions needs exploration. Here we show this feasibility using Neural General Circulation Model (NeuralGCM), a hybrid ML-physics atmospheric model developed by Google, for seasonal predictions of large-scale atmospheric variability and Northern Hemisphere tropical cyclone (TC) activity. Inspired by physical model studies, we simplify boundary conditions, assuming sea surface temperature (SST) and sea ice follow their climatological cycle but persist anomalies present at the initialization time. With such forcings, NeuralGCM can generate 100 simulation days in ~8 minutes with a single Graphics Processing Unit (GPU), while simulating realistic atmospheric circulation and TC climatology patterns. This configuration yields useful seasonal predictions (July to November) for the tropical atmosphere and various TC activity metrics. Notably, the predicted and observed TC frequency in the North Atlantic and East Pacific basins are significantly correlated during 1990 to 2023 (r=~0.7), suggesting prediction skill comparable to existing physical GCMs. Despite challenges associated with model resolution and simplified boundary forcings, the model-predicted interannual variations demonstrate significant correlations with the observation, including the sub-basin TC tracks (p<0.1) and basin-wide accumulated cyclone energy (p<0.01) of the North Atlantic and North Pacific basins. These findings highlight the promise of leveraging ML models with physical insights to model TC risks and deliver seamless weather-climate predictions.
Related papers
- Learning to generate physical ocean states: Towards hybrid climate modeling [1.5845117761091052]
Ocean General Circulation Models require extensive computational resources to reach equilibrium states.<n>Deep learning emulators, despite offering fast predictions, lack the physical interpretability and long-term stability necessary for climate scientists.<n>We propose to take the best from both worlds by leveraging deep generative models to produce physically consistent oceanic states.
arXiv Detail & Related papers (2025-02-04T17:14:41Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Embedding machine-learnt sub-grid variability improves climate model biases [0.44998333629984877]
Under-representation of cloud formation is a long-standing bias associated with climate simulations.
We overcome these biases by embedding a Multi-Output Gaussian Process (MOGP) trained on high resolution Unified Model simulations.
Ten-year predictions are generated for both control and ML-hybrid models.
arXiv Detail & Related papers (2024-06-13T19:35:58Z) - Prediction Beyond the Medium Range with an Atmosphere-Ocean Model that Combines Physics-based Modeling and Machine Learning [0.0]
This paper explores the potential of a hybrid modeling approach that combines machine learning (ML) with conventional physics-based modeling for weather prediction beyond the medium range.<n>The model is based on the low-resolution, simplified parameterization atmospheric general circulation model SPEEDY.<n>The model has skill in predicting the El Nino cycle and its global teleconnections with precipitation for 3-7 months depending on the season.
arXiv Detail & Related papers (2024-05-29T20:56:44Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
We present ClimODE, a continuous-time process that implements key principle of statistical mechanics.
ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow.
Our approach outperforms existing data-driven methods in global, regional forecasting with an order of magnitude smaller parameterization.
arXiv Detail & Related papers (2024-04-15T06:38:21Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Neural General Circulation Models for Weather and Climate [7.545206238427117]
General circulation models (GCMs) are the foundation of weather and climate prediction.
Here we present the first GCM that combines a differentiable solver for atmospheric dynamics with ML components.
We show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best ML and physics-based methods.
arXiv Detail & Related papers (2023-11-13T10:40:17Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Dynamical Tests of a Deep-Learning Weather Prediction Model [0.0]
Deep-learning weather prediction models have been shown to produce forecasts that rival those from physics-based models run at operational centers.
It is unclear whether these models have encoded atmospheric dynamics, or simply pattern matching that produces the smallest forecast error.
Here we subject one such model, Pangu-weather, to a set of four classical dynamical experiments that do not resemble the model training data.
We conclude that the model encodes realistic physics in all experiments, and suggest it can be used as a tool for rapidly testing ideas before using expensive physics-based models.
arXiv Detail & Related papers (2023-09-19T18:26:41Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.