Neural General Circulation Models for Weather and Climate
- URL: http://arxiv.org/abs/2311.07222v3
- Date: Fri, 8 Mar 2024 02:14:15 GMT
- Title: Neural General Circulation Models for Weather and Climate
- Authors: Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie
Smith, Griffin Mooers, Milan Kl\"ower, James Lottes, Stephan Rasp, Peter
D\"uben, Sam Hatfield, Peter Battaglia, Alvaro Sanchez-Gonzalez, Matthew
Willson, Michael P. Brenner, Stephan Hoyer
- Abstract summary: General circulation models (GCMs) are the foundation of weather and climate prediction.
Here we present the first GCM that combines a differentiable solver for atmospheric dynamics with ML components.
We show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best ML and physics-based methods.
- Score: 7.545206238427117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: General circulation models (GCMs) are the foundation of weather and climate
prediction. GCMs are physics-based simulators which combine a numerical solver
for large-scale dynamics with tuned representations for small-scale processes
such as cloud formation. Recently, machine learning (ML) models trained on
reanalysis data achieved comparable or better skill than GCMs for deterministic
weather forecasting. However, these models have not demonstrated improved
ensemble forecasts, or shown sufficient stability for long-term weather and
climate simulations. Here we present the first GCM that combines a
differentiable solver for atmospheric dynamics with ML components, and show
that it can generate forecasts of deterministic weather, ensemble weather and
climate on par with the best ML and physics-based methods. NeuralGCM is
competitive with ML models for 1-10 day forecasts, and with the European Centre
for Medium-Range Weather Forecasts ensemble prediction for 1-15 day forecasts.
With prescribed sea surface temperature, NeuralGCM can accurately track climate
metrics such as global mean temperature for multiple decades, and climate
forecasts with 140 km resolution exhibit emergent phenomena such as realistic
frequency and trajectories of tropical cyclones. For both weather and climate,
our approach offers orders of magnitude computational savings over conventional
GCMs. Our results show that end-to-end deep learning is compatible with tasks
performed by conventional GCMs, and can enhance the large-scale physical
simulations that are essential for understanding and predicting the Earth
system.
Related papers
- Super Resolution On Global Weather Forecasts [0.1747623282473278]
Group seeks to improve upon existing deep learning based forecasting methods by increasing spatial resolutions of global weather predictions.
Specifically, we are interested in performing super resolution (SR) on GraphCast temperature predictions by increasing the global precision from 1 degree of accuracy to 0.5 degrees.
arXiv Detail & Related papers (2024-09-17T19:07:13Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
We present ClimODE, a continuous-time process that implements key principle of statistical mechanics.
ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow.
Our approach outperforms existing data-driven methods in global, regional forecasting with an order of magnitude smaller parameterization.
arXiv Detail & Related papers (2024-04-15T06:38:21Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - A Multi-Scale Deep Learning Framework for Projecting Weather Extremes [3.3598755777055374]
Weather extremes are a major societal and economic hazard, claiming thousands of lives and causing billions of dollars in damage every year.
General circulation models (GCMs), which are currently the primary tool for climate projections, cannot characterize weather extremes accurately.
We present a multi-resolution deep-learning framework that corrects a GCM's biases by matching low-order and tail statistics of its output with observations at coarse scales.
We use the proposed framework to generate statistically realistic realizations of the climate over Western Europe from a simple GCM corrected using observational atmospheric reanalysis.
arXiv Detail & Related papers (2022-10-21T17:47:05Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.